
Fragmentation in Large Object Repositories
Experience Paper

Russell Sears
University of California, Berkeley

sears@cs.berkeley.edu

Catharine van Ingen
Microsoft Research

vanIngen@microsoft.com

ABSTRACT
Fragmentation leads to unpredictable and degraded application
performance. While these problems have been studied in detail
for desktop filesystem workloads, this study examines newer
systems such as scalable object stores and multimedia
repositories. Such systems use a get/put interface to store objects.
In principle, databases and filesystems can support such
applications efficiently, allowing system designers to focus on
complexity, deployment cost and manageability.

Although theoretical work proves that certain storage policies
behave optimally for some workloads, these policies often behave
poorly in practice. Most storage benchmarks focus on short-term
behavior or do not measure fragmentation. We compare SQL
Server to NTFS and find that fragmentation dominates
performance when object sizes exceed 256KB-1MB. NTFS
handles fragmentation better than SQL Server. Although the
performance curves will vary with other systems and workloads,
we expect the same interactions between fragmentation and free
space to apply.

It is well-known that fragmentation is related to the percentage
free space. We found that the ratio of free space to object size
also impacts performance. Surprisingly, in both systems, storing
objects of a single size causes fragmentation, and changing the
size of write requests affects fragmentation. These problems
could be addressed with simple changes to the filesystem and
database interfaces. It is our hope that an improved understanding
of fragmentation will lead to predictable storage systems that
require less maintenance after deployment.

Categories and Subject Descriptors
D.4.3 [File Systems Management], D.4.8 [Performance], H.3.2
[Information Storage], K.6.2 [Installation Management]

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
BLOBs, Fragmentation, Filesystem Aging, Object Store, Storage
Age, Storage Layout, Allocation Events, Benchmark, Filesystem,
Database.

1. INTRODUCTION
Application data objects continue to increase in size.
Furthermore, the increasing popularity of web services and other
network applications means that systems that once managed static
archives of “finished” objects now manage frequently modified
versions of application data. Rather than updating these objects in
place, typical archives either store multiple versions of the objects
(the V of WebDAV stands for “versioning” [25]), or simply do
wholesale replacement (as in SharePoint Team Services [19]).
Similarly, applications such as personal video recorders and
media subscription servers continuously allocate and delete large,
transient objects.

Applications store large objects as some combination of files in
the filesystem and as BLOBs (binary large objects) in a database.
Only folklore is available regarding the tradeoffs. Most designers
say that a database is probably best for small objects and that that
files are best for large objects. However, the breakpoint is fuzzy
and the underlying causes are unclear.

This article compares the performance of two different
implementations of an abstracted write-intensive web application.
The first implementation uses SQL Server to store the objects as
BLOBs. The second uses NTFS to store the objects as files. We
measure how performance changes over time as the storage
becomes fragmented.

One surprising (to us) conclusion of our work is that storage
fragmentation is the main determinant of the break-even point
between the systems. In essence, the filesystem seems to have
better fragmentation handling than the database and this drives the
break-even point down from about 1MB to about 256KB.

By characterizing the fragmentation behavior of large object
repositories, we raise a number of important questions that are left
unaddressed: little is understood about the allocation patterns and
object lifetimes of these applications, and our experiments reveal
unexpected interactions between high-level interfaces and storage
layout policies. The filesystem and database communities would
benefit from a mutual understanding of existing techniques and
fragmentation.

2. BACKGROUND
Filesystems have long used sophisticated allocation strategies to
avoid fragmentation while laying out objects on disk. For
example, OS/360’s filesystem was extent based and clustered
extents to improve access time. The VMS filesystem included
similar optimizations and provided a file attribute that allowed
users to request a (best effort) contiguous layout [9, 13]. Berkeley
FFS [14] was an early UNIX filesystem that took sequential
access, seek performance and other hardware characteristics into
account. Subsequent filesystems were built with similar goals in
mind.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make
derivative works and make commercial use of the work, but you must
attribute the work to the authors and CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

298

The filesystem used in these experiments, NTFS, uses a ‘banded’
allocation strategy for metadata, but not for file contents
[Microsoft NTFS Development Team, Personal Communication].
NTFS allocates space for file stream data from a run-based lookup
cache. Runs of contiguous free clusters are ordered in decreasing
size and volume offset. NTFS attempts to satisfy a new space
allocation from the outer band. If that fails, large extents within
the free space cache are used. If that fails, the file is fragmented.
Additionally, the NTFS transactional log entry must be committed
before freed space can be reallocated after file deletion. The net
behavior is that file stream data tends to be allocated contiguously
within a file.

Databases historically focused on small (100-byte) records and on
clustering tuples within the same table. Clustered indexes let
users control the order in which tuples are stored, allowing
common queries to be serviced with a sequential scan over the
data.

Filesystems and databases take different approaches to modifying
an existing object. Filesystems are optimized for appending or
truncating a file. When data are inserted or deleted in the middle
of a file, such as when an element is added to an XML document,
all contents after the modification must be completely rewritten.
Some databases completely rewrite modified BLOBs; this rewrite
is transparent to the application. Others, such as SQL Server,
adopt the Exodus design that supports efficient insertion or
deletion within an object by using B-Tree based storage of large
objects [4]. In such systems, insertions and deletions within an
object can lead to fragmentation [3].

Hybrid approaches exist as well. POSTGRES 4 can store BLOBs
in the filesystem or in database rows, and provides a filesystem-
style interface to applications. It also supports various
compression schemes and server side processing of BLOBs [22].
IBM DB2’s DataLinks technology stores BLOBs in the
filesystem, and uses the database as an associative index of the
file metadata [2]. Their files are updated atomically using a
mechanism similar to safe writes (Section 4).

3. PRIOR WORK
We know of few systematic studies of fragmentation and little
hard data on the actual performance of fragmented systems. A
number of benchmarks are impacted by fragmentation, but do not
measure fragmentation per se. There are many discussions of
space allocation algorithms. However, existing studies do not
cover recent changes in applications and the increasing popularity
of databases.

3.1 Folklore
There is a wealth of anecdotal experience with applications that
use large objects. The prevailing wisdom is that databases are
better for small objects while filesystems are better for large
objects. The boundary between small and large is a bit fuzzy.
The usual reasoning is:

• Database queries are faster than file opens. The overhead of
opening a file handle dominates performance for small
objects.

• While file opens are CPU expensive, they are easily
amortized over the cost of streaming large objects.

• Reading or writing large files is faster than accessing large
database BLOBs. Filesystems are optimized for streaming
large objects.

• Database client interfaces are not designed for large objects.
Instead, they have been optimized for short low-latency
requests returning small amounts of data.

None of the above points address the question of application
complexity. Applications that store large objects in the filesystem
encounter the question of how to keep the database object
metadata and the filesystem object data synchronized. A common
problem is the garbage collection of files that have been “deleted”
in the database but not the filesystem. Also missing are
operational issues such as replication, backup, disaster recovery,
and fragmentation.

3.2 Theoretical results
The bulk of the theoretical work focuses on online schemes that
always choose a contiguous layout for file data, but that may
waste space. Early work bins small files into a set of disk tracks
so that no file spans more than one track. This guarantees that
each file can be read using a single disk seek. A variant of first fit
always allocates space that is no more than 1.223 times larger than
the optimal binning [6]. In the worst case, an optimal layout
policy that allowed larger files, but still guaranteed that files are
contiguous would use between 0.5 M log2 n and 0.84 M log2 n
bytes of storage, where M is the number of bytes of data, and n is
the maximum file length. First fit is nearly optimal, using at most
M log2 n bytes [16]. Unfortunately, for objects in the megabyte to
gigabyte range, these bounds imply volumes should be roughly 20
to 30 times larger than the data they store.

Later work shows that, given some simplifying assumptions, some
layout policies have acceptable average case performance with
certain workloads [5]. Allocation algorithms that fragment
objects are not considered; fragmentation arises only from space
between objects. Also, inter-file locality and seek times are not
considered.

The question of disk space layout is both similar to and different
from memory allocation (malloc). In both cases, space can
become fragmented and similar simplifying assumptions are often
made. Disk space layout differs from memory layout in that the
cost of a poor layout is larger—a disk seek rather than a cache
miss—and that the cost of repairing a very fragmented disk is
larger—a backup restore or total recreation of a database on new
storage rather than a process restart or system reboot.

Borrowing from the malloc literature [26], we distinguish between
allocation mechanisms, such as the buddy system, boundary tags
and B-trees, and the policies that they approximate, such as best
fit, and preserving locality of consecutive requests.

In practice, deallocation patterns can be highly structured. For
example, pictures shared for an event are often uploaded and later
deleted as a group. Ideally, such deallocation would produce
large, contiguous regions of free space. Empirical studies have
shown that objects malloced at the same time are usually freed at
the same time. Therefore, using a large, contiguous region for a
collection of related allocations tends to preserve the contiguous
region for eventual reuse.

Until recently, it was standard practice for theoretical studies to
assume objects are deallocated randomly. This allows algorithms
that ignore structure in file deletion requests to perform well on
synthetic workloads, and explains why theoretically optimal
allocation strategies can perform poorly in practice.

299

Applications that concurrently process unrelated requests
complicate the situation because temporal clustering is no longer
adequate [1]. Web services encounter multiple groups of users,
each of which exhibit different behaviors. For example, the
allocation patterns of ad hoc sharing and long-term archival differ,
and members of flash crowds behave in different ways than loyal
web site visitors.

Applications that partition data based upon object sizes, expected
workloads and deallocation patterns, or that use underlying
storage in degenerate ways (Section 5.4) can also complicate
matters. Such behavior may destroy allocation patterns or hide
them from the storage layer.

As drive capacity increases, it may be worthwhile to trade
capacity for predictability and implement persistent storage
systems that do not support file fragmentation. For these reasons,
the relevance of early theoretical results may increase over time.

3.3 Standard benchmarks
Most filesystem benchmarking tools consider only the
performance of clean filesystems and do not evaluate long-term
performance as the storage system ages and fragments. Using
simple initial conditions eliminates potential variation in results
and reduces the need for settling time to allow the system to reach
equilibrium.

Several long-term filesystem fragmentation and performance
studies have been performed based upon two general approaches
[18]. Trace based load generation uses data gathered from
production systems over a long period. Vector based load
generation models application behavior as a list of primitives and
randomly applies each primitive with the frequency of a real
application.

NetBench [15] is the most common Windows file server
benchmark. It measures the performance of a file server accessed
by multiple clients using office applications.

SPC-2 benchmarks storage system applications that read and write
large files in place, execute large read-only database queries, or
provide read-only on-demand access to video files [21].

The Transaction Processing Performance Council [24] defined
several benchmark suites to characterize online transaction
processing workloads and decision support workloads. These
benchmarks do not address large objects or multimedia databases.

None of these benchmarks explicitly consider file fragmentation.

3.4 Data layout approaches
The creators of FFS observed that for typical workloads of the
time, fragmentation avoiding allocation algorithms kept
fragmentation under control as long as volumes were kept under
90% full [20]. UNIX variants still reserve a certain amount of
free space on the drive, both for disaster recovery and in order to
prevent excess fragmentation.

The Dartmouth Time-Sharing System (DTSS) file system was
developed in the 1960’s and used by the Honeywell DPS/8. It
lays out files using the buddy system, which imposes hard limits
on the number of fragments that can be used to store files of
various lengths. Although it had good fragmentation behavior,
the fragmentation limits it imposed were problematic for
applications that created large files [12].

NTFS disk occupancy on deployed Windows systems varies
widely. System administrators target disk occupancy as low as

60% or over 90% [Microsoft NTFS Development Team, Personal
Communication]. The Windows defragmentation utility supports
on-line partial defragmentation including system files.

LFS [17], a log-based filesystem, optimizes for write performance
by organizing data on disk according to the chronological order of
the write requests. This allows it to service write requests
sequentially but causes severe fragmentation when files are
updated randomly. A cleaner that simultaneously defragments the
disk and reclaims deleted file space can partially address this
problem.

XFS [23] is a filesystem designed for large-object storage that
uses delayed allocation and best fit to avoid fragmentation. Later
versions of FFS adopt a similar policy, realloc, which groups
logically sequential blocks into physically contiguous clusters as
they are flushed to disk. The maximum cluster length was
typically set to the storage system’s maximum transfer size. The
realloc allocation policy roughly halved the disk fragmentation
caused by a trace-based workload generator [20]. Delayed
allocation was later adopted by other filesystems such as EXT2
and ReiserFS.

Network Appliance’s WAFL (“Write Anywhere File Layout”)
[11] is able to switch between conventional and write-optimized
file layouts depending on workload conditions. WAFL also
leverages NVRAM caching for efficiency and provides access to
snapshots of older versions of the filesystem contents. Rather
than a direct copy-on-write of the data, WAFL metadata remaps
the file blocks. A defragmentation utility is supported but is said
not to be needed until disk occupancy exceeds 90+%.

While most approaches to fragmentation focus on the number of
seeks required to read a file, newer drives are divided into zones
that transfer data at different bandwidths. An optimal policy for
placing popular files in faster zones has been developed, along
with online reorganization to defragment and migrate popular
files. Simulations show a 20-40% performance improvement on
FTP workloads [7]. NTFS’s banded allocation strategy is
designed to take advantage of disk zones. Similarly, its
defragmenter moves application and boot files to faster bands.

GFS [8], a filesystem designed to deal with multi-gigabyte files
on 100+ terabyte volumes, addresses the data layout problem by
using 64MB chunks. GFS provides a safe record append
operation that allows multiple simultaneous client appends to the
same file, reducing the number of files (and opportunities for
fragmentation) exposed to the underlying filesystem. GFS
records may not span chunks, which can result in internal
fragmentation. If a record will not fit into the current chunk, that
chunk is zero padded, and a new chunk is allocated. Records are
constrained to be less than ¼ the chunk size to prevent excessive
internal fragmentation. However, GFS does not explicitly attempt
to address fragmentation introduced by the underlying filesystem,
or to reduce internal fragmentation after records are allocated.

4. COMPARING FILES AND BLOBS
Our experiments focused on applications that make use of simple
get/put storage primitives. Such applications are quite common
and include most desktop applications such as word processors,
collaboration tools such as SharePoint, applications built on top of
WebDAV, web services such as photo sharing, some web mail
implementations, and map and GIS services.

To present a fair comparison of NTFS and SQL Server, we were
careful to ensure that they provide similar semantics. Under

300

NTFS, we use safe writes to atomically update objects. To
perform a safe write an application writes the object to a
temporary file, forces that file to be written to disk, and then
atomically replaces the permanent file with the temporary file.
Typically, this is done using ReplaceFile() under Windows, or
rename() under UNIX.

Under SQL Server, we used bulk logged mode. In this mode,
newly allocated BLOBs are written to the page file and forced to
disk at commit. This avoids the log write while providing normal
ACID transactional semantics. In this way, neither NTFS nor
SQL Server support BLOB recovery after media failure as there is
no second copy of the BLOB.

For simplicity, we did not consider the overhead of detecting and
correcting silent data corruption and media failures. These
overheads are comparable for file and database systems, and
typically involve maintenance of multiple copies with periodic
“scrubbing” to detect and correct data corruption.

Since our purpose was to fairly evaluate the out-of-the-box
performance of the two storage systems, we did no performance
tuning except in cases where the default settings introduced gross
discrepancies in the functionality that the two systems provided.

4.1 File based storage
Following the practice of our applications, we stored object names
and other metadata in SQL server tables. Each application object
was stored in its own file. The files were placed in a single
directory on an otherwise empty NTFS volume. SQL was given a
dedicated log and data drive, and the NTFS volume was accessed
via UNC path.

This partitioning is fairly flexible and allows a number of
replication and load-balancing schemes. The database isolates the
client from the physical location of data—changing the pointer in
the database changes the path returned to the client.

We chose to measure performance with the database co-located
with the associated files. This configuration kept our experiments
simple and independent of the network layout. However, we
structured all code to use the same interfaces and services as a
networked configuration.

4.2 Database storage
The database storage tests were designed to be as similar to the
filesystem tests as possible. We stored the BLOBs and the
metadata in the same filegroup, but we used out-of-row storage
for the BLOB data so that the BLOBs did not decluster the
metadata. Out-of-row storage places BLOB data on pages that do
not store other table fields, allowing the table data to be kept in
cache.

Analogous table schemas and indices were used and only minimal
changes were made to the software that performed the tests.

4.3 Workload generation
The applications of interest are extremely simple from the storage
point of view. A series of object allocation, deletion, and
safe-write updates are processed with interleaved read requests.

For simplicity, we assumed that all objects are equally likely to be
written and/or read. We also assumed that there is no correlation
among objects. Recall from Section 3.2 that this simple allocation
model is inappropriate for any structured real-world workload.

We measured constant size objects rather than objects with more
complicated size distributions. We expected size distribution to
be an important factor in our experiments. As discussed below,
we found that it had no obvious effect on fragmentation behavior.

We considered more sophisticated synthetic workloads, but
concluded that the added complexity would not lead to more
insight. First, given current understanding of large object
applications, high-level caches, load balancing and heat-based
object partitioning, any distribution we chose would be based on
speculation. Second, complex workloads often obfuscate simple
yet important effects by making it difficult to interpret the results.

4.4 Storage age
Past fragmentation studies measure age in elapsed time such as
days or months [20], or in the total amount of work performed [3].
However, elapsed time is not very meaningful when applied to
synthetic traces, and measurements of total work performed
depend on volume size. We considered reporting age in “hours
under load”, but this would allow slow storage systems to perform
less work during the test.

We measure time using storage age; the ratio of bytes in objects
that once existed on a volume to the number of bytes in use on the
volume. This definition assumes that the amount of free space on
a volume is relatively constant over time but allows comparison of
workloads with different distributions of object lifetimes. Storage
age is similar to the VIFS performance study’s generations; a new
generation begins when each file from the previous generation has
been deleted and replaced [10].

In a safe-write system, storage age is the ratio of object
insert-update-delete bytes divided by the number of live object
bytes. For our workload, this is “safe writes per object”.

Given an application trace, storage age can be computed from the
data allocation rate. This allows synthetic workloads to be
compared to trace-based workloads. Storage age is independent
of volume size and update strategy. Therefore it can be compared
across hardware configurations and applications.

5. RESULTS
We used throughput as the primary indicator of performance, and
started by benchmarking a clean system. We then looked at the
longer-term changes caused by fragmentation with a focus on
256K to 1M object sizes where the filesystem and database have
comparable performance. Finally, we discuss the effects of
volume size and object size distribution.

5.1 Test system configuration
All the tests were performed on the system described in Table 1.
All test code was written using C# in Visual Studio 2005 Beta 2
and was compiled to x86 code with debugging disabled.

Table 1. Configuration of the test system

Tyan S2882 K8S Motherboard,
1.8 Ghz Opteron 244, 2 GB RAM (ECC)

SuperMicro “Marvell” MV8 SATA controller

4 Seagate 400GB ST3400832AS 7200 rpm SATA drives

Windows Server 2003 R2 Beta (32 bit mode)

SQL Server 2005 Beta 2 (32 bit mode)

301

5.2 Initial throughput
We begin by establishing when a database is clearly the right
answer and when the filesystem is clearly the right answer. On a
clean data store, Figure 1 demonstrates the truth of the folklore:
objects up to about 1MB are best stored as database BLOBs.
With 10MB objects, NTFS outperforms SQL Server.
Interestingly, the write throughput of SQL Server exceeded that of
NTFS during bulk load. With 512KB objects, database write
throughput was 17.7MB/s, while the filesystem only achieved
10.1MB/s (Figure 4).

5.3 Performance over time
Next, we evaluate the performance over time. If fragmentation is
important, we expect to see noticeable performance degradation.

Our first discovery was that SQL Server’s fragmentation reports
and defragmentation tools handle index data but not large object
data. The recommended way to defragment a large BLOB table is
to create a new table in a new file group, copy the old records to
the new table and drop the old table [Microsoft SQL Server
Development Team, Personal communication].

To measure fragmentation, we tagged each of our objects with a
unique identifier and a sequence number at 1KB intervals, and
then determined the physical locations of these markers on the
hard disk. We validated this tool against the Windows NTFS
defragmentation utility by comparing the reports.

The degradation in read performance for 256K, 512K, and 1MB
BLOBs is shown in Figure 1. Each storage age (2 and 4)
corresponds to the time necessary for the number of updates,
inserts, or deletes to be N times the number of objects in our store
since the bulk load (storage age 0).

For large objects, fragmentation under NTFS begins to level off
over time, while SQL Server’s fragmentation increases almost
linearly over time and does not seem to be approaching any
asymptote (Figure 2). When we ran on an artificially and
pathologically fragmented NTFS volume, we found that
fragmentation slowly decreases over time. This suggests that
NTFS is indeed approaching an asymptote.

These results indicate that as storage age increases, the break-even
point where NTFS and SQL Server have comparable performance
declines from 1MB to 256KB. Within this range, fragmentation
eventually halves SQL Server’s throughput. Objects up to about
256KB are best kept in the database; larger objects should be in
the filesystem.

To verify this, we attempted to run both systems until their
performance converged to comparable steady states. Figure 3
indicates that fragmentation in both systems converges to four
fragments per file, or one fragment per 64KB. Our tests use
64KB write requests, suggesting that the impact of the size of file
creation and append operations upon fragmentation warrants
further study. From this data, we conclude that SQL Server’s read
performance is indeed superior to NTFS on objects under 256KB.

Read Throughput After Bulk load

0

2

4

6

8

10

12

256K 512K 1M

Object Size

M
B

/s
e

c

Database

Filesystem

Read Throughput After Two Overwrites

0

2

4

6

8

10

12

256K 512K 1M

Object Size

M
B

/s
e

c

Database

Filesystem

Read Throughput After Four Overwrites

0

1

2

3

4

5

6

7

8

9

10

256K 512K 1M

Object Size

M
B

/s
e

c

Database

Filesystem

Figure 1. Read throughput. Immediately after bulk load,
SQL Server is faster on small objects while NTFS is faster for

large objects. As objects are overwritten, fragmentation
degrades SQL Server’s performance. NTFS eventually

outperforms SQL Server on objects greater than 256KB.

Long Term Fragmentation With 10 MB Objects

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Database

Filesystem

Figure 2. Large object fragmentation. “Storage Age” is the
ratio of deleted objects to live objects. Contiguous objects

have 1 fragment.

302

Figure 4 shows the degradation in write performance as storage
age increases. In both systems, the write throughput during bulk
load is much better than read throughput immediately afterward.
Both can simply append each new object to the end of allocated
storage, avoiding seeks. On the other hand, the read requests are
randomized and incur at least one seek. As the fragmentation
behavior of the two systems suggests, the write performance of
SQL Server degrades quickly after bulk load.

Note that the read and write performance numbers are not directly
comparable. The read performance is measured after
fragmentation, while write performance is measured during
fragmentation. For example, the “storage age two” write
performance is the average write throughput between the “bulk
load” and “storage age two” read measurements.

5.4 Fragmentation effects of object size,
volume capacity, and write request size
Distributions of object size vary greatly. Similarly, applications
are deployed on storage volumes of widely varying size. This
section describes the effects of varying object size distributions
and volume sizes. All experiments presented here make use of
objects with a mean size of 10MB.

Our intuition suggested that constant size objects should not
fragment. Best fit, first fit and worst fit all behave optimally on

this workload—deleting a contiguous object always leaves a
region of contiguous free space exactly the right size to store any
other object. To confirm this, we compared fragmentation
behavior with a constant object size and with object sizes drawn
from a uniform distribution. As shown in Figure 5, our intuition
was wrong. As long as the average object size is held constant
there is little difference—fragmentation is occurring with both
constant- and uniform-sized objects.

We believe the fragmentation occurs because NTFS allocates
space as the file is being appended to, which is before it knows the
final size. Also, modifying the size of the write requests that
append to NTFS files and database BLOB’s changes long-term
fragmentation behavior, supporting this theory.

There is no way to pass the (known) object size to the file system
at file creation and initial space allocation. NTFS will
aggressively attempt to allocate contiguous space when sequential
appends are detected, but there is no guarantee of contiguous
allocation. Systems that use deferred allocation partially address
this problem by implicitly increasing the size of file append
requests. These systems trade system memory to buffer write
requests for improved information about the object’s final size.
Although changing the allocation interface would improve
performance for get/put applications, it is unclear what fraction of
applications these represent.

Long Term Fragmentation With 256K Objects

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Database

Filesystem

Figure 3. For small objects, the systems have similar

fragmentation behavior.

512K Write Throughput Over Time

0

2

4

6

8

10

12

14

16

18

20

After bulk load (zero) Two Four
Storage Age

M
B

/s
e

c

Database

Filesystem

Figure 4. Although SQL Server quickly fills a volume with

data, its performance suffers when existing objects are
replaced.

Database Fragmentation: Blob Distributions

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Constant

Uniform

Filesystem Fragmentation: Blob Distributions

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Constant

Uniform

Figure 5. Fragmentation for large (10MB) BLOBs increases

slowly for NTFS but rapidly for SQL. Surprisingly, objects of
a constant size show no better fragmentation performance
than objects of sizes chosen uniformly at random with the

same average size.

During bulk load (zero) Two Four

303

The time it takes to run the experiments is proportional to the
volume’s capacity. When the entire disk capacity (400GB) is
used, some experiments take a week to complete. Using a smaller
(although perhaps unrealistic) volume size allows more
experiments; but how trustworthy are the results?

As shown in Figure 6, the exact size of large (40-400GB) volumes
has a relatively minor effect on performance. However, on
smaller volumes, we found that as the ratio of free space to object
size decreases, performance degrades. We did not characterize
the exact point where this becomes a significant issue. Although
larger volumes tend to outperform smaller volumes, our results
suggest that the effect is negligible when there is 10% free space
on a 40GB volume storing 10MB objects, or a pool of 400 free
objects. On a 4GB volume with a pool of 40 free objects,
performance degraded rapidly. We found that NTFS is able to
take advantage of extremely large pools of free objects on
volumes with low occupancy. When we keep the volumes 50%
full, 400GB NTFS volumes converge to 4-5 fragments/object,
while 40GB volumes converge to 11-12 fragments/object.

Our results suggest that extremely simple size distributions can be
representative of many different get/put workloads. Our simple
synthetic workload led to easily interpretable system behaviors
and provided insight that would be difficult to obtain from trace-
based studies. However, synthetic workloads are unrealistic
models of real systems. Trace-based workload generation and a
better understanding of real-world large object workloads would
complement this study by allowing for realistic comparisons of
large object storage techniques.

6. CONCLUSIONS
When designing a new system, it is important to consider
behavior over time instead of looking only at the performance of a
clean system. When fragmentation is a significant concern, the
system must be defragmented regularly. However,
defragmentation may require additional application logic and
imposes read/write performance impacts that can outweigh its
benefits.

Using storage age to measure time aids in the comparison of
different designs. Here, we use safe-writes per object. In other
applications, appends per object or some combination of
create/append/deletes may be more appropriate.

For objects larger than 1MB, NTFS has a clear advantage over
SQL Server. If the objects are smaller than 256 KB, the database
has a clear advantage. Between 256KB and 1MB, storage age
determines which system performs better.

The ability to specify the size of the object before initial space
allocation could reduce fragmentation. We did not consider
object update interfaces that allow arbitrary insertion and deletion
of BLOB ranges; these would lead to different fragmentation
behavior and application strategies. Also not considered were
interleaved append requests to multiple objects, which are likely
to increase fragmentation.

Information regarding the performance of fragmented storage is
scarce, and characterization of other systems will likely provide
additional insight. While both SQL Server and NTFS can be
improved, the impact of such improvements is difficult to gauge
without a better understanding of real-world deployments.

7. ACKNOWLEDGMENTS
Many thanks to Jim Gray for suggestions that focused this study.
Eric Brewer suggested the approach we used for the
fragmentation analysis tool. Surendra Verma, Michael Zwilling
and their development teams patiently answered questions
throughout the study. We thank Dave DeWitt, Ajay Kalhan,
Norbert Kusters, Wei Xiao, the anonymous reviewers, and all of
the above for their constructive criticism.

Database Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

50% full - 40G

50% full - 400G

Filesystem Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

50% full - 40G

50% full - 400G

Filesystem Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/O

b
je

c
t

90% full - 40G

90% full - 400G

97.5% full - 40G

97.5% full - 400G

Figure 6. Fragmentation for 40GB and 400GB volumes.
Other than the 50% full filesystem run, volume size has little

impact on fragmentation.

304

8. REFERENCES
[1] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe

and Paul R. Wilson. “Hoard: A Scalable Memory Allocator for
Multithreaded Applications.” ASPLOS, 2000.

[2] Suparna Bhattacharya, Karen W. Brannon, Hui-I Hsiao, C.
Mohan, Inderpal Narang and Mahadevan Subramanian.
“Coordinating Backup/Recovery and Data Consistency
between Database and File Systems.” SIGMOD, 2002.

[3] Alexandros Biliris. “The Performance of Three Database
Storage Structures for Managing Large Objects.” SIGMOD,
1992.

[4] Michael J. Carey, David J. DeWitt, Joel E. Richardson and
Eugene J. Shekita. “Object and File Management in the
EXODUS Extensible Database System.” VLDB, 1986.

[5] E. G. Coffman, Jr. and F. T. Leighton. “A Provably Efficient
Algorithm for Dynamic Storage Allocation.” STOC, 1986.

[6] M. R. Garey, R. L. Graham and J. D. Ullman. “Worst-Case
Analysis of Memory Allocation Algorithms.” STOC, 1972.

[7] Shahram Ghandeharizadeh, Douglas J. Ierardi, Dongho Kim
and Roger Zimmermann. “Placement of Data in Multi-Zone
Disk Drives.” BalticDB&IS, 1996.

[8] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung.
“The Google File System.” SOSP, 2003.

[9] A. C. Goldstein. “The Design and Implementation of a
Distributed File System.” Digital Technical Journal, 1, 5
(September 1987), 45-55.

[10] Eric H. Herrin II and Raphael A. Finkel. The Viva File
System. Technical Report Number 225-93, University of
Kentucky, 1993.

[11] Dave Hitz, James Lau and Michael Malcolm. “File System
Design for an NFS File Server Appliance.” USENIX Winter
Technical Conference, 1994.

[12] Philip D. L. Koch. “Disk File Allocation Based on the Buddy
System.” TOCS, 5, 7, (November 1987), 352-370.

[13] K. McCoy. VMS File System Internals. Digital Press, 1990.

[14] Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler
and Robert S. Fabry. “A Fast File System for UNIX.” TOCS,
2, 3, (August 1984), 181-197.

[15] “NetBench.” Lionbridge Technologies, 2002.
http://www.lionbridge.com/lionbridge/en-us/services/
outsourced-testing/benchmark-software.htm

[16] J. M. Robson. “Worst Case Fragmentation of First Fit and
Best Fit Storage Allocation Strategies.” The Computer Journal,
20, 3, (1977), 242-244.

[17] Mendel Rosenblum and John K. Ousterhout. “The Design
and Implementation of a Log-Structured File System.” SOSP,
1991.

[18] Margo Seltzer, David Krinsky, Keith A. Smith and Xiaolan
Zhang. “The Case for Application-Specific Benchmarking.”
HotOS, 1999.

[19] SharePoint Team Services.
http://www.microsoft.com/sharepoint/

[20] Keith A. Smith and Margo Seltzer. “A Comparison of FFS
Disk Allocation Policies.” USENIX Annual Technical
Conference, 1996.

[21] SPC Benchmark-2 (SPC-2) Official Specification, Version
1.0. Storage Performance Council, 2005.
http://www.storageperformance.org/specs/spc2_v1.0.pdf

[22] Michael Stonebraker and Michael Olson. “Large Object
Support in POSTGRES.” ICDE, 1993.

[23] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,
Mike Nishimoto and Geoff Peck. “Scalability in the XFS File
System.” USENIX Annual Technical Conference, 1996.

[24] Transaction Processing Performance Council.
http://www.tpc.org

[25] WebDAV. http://www.webdav.org/

[26] Paul R. Wilson, Mark S. Johnstone, Michael Neely and David
Boles. “Dynamic Storage Allocation: A Survey and Critical
Review.” IWMM, 1995.

305

