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ABSTRACT 
Fragmentation leads to unpredictable and degraded application 
performance.  While these problems have been studied in detail 
for desktop filesystem workloads, this study examines newer 
systems such as scalable object stores and multimedia 
repositories.  Such systems use a get/put interface to store objects.  
In principle, databases and filesystems can support such 
applications efficiently, allowing system designers to focus on 
complexity, deployment cost and manageability. 

Although theoretical work proves that certain storage policies 
behave optimally for some workloads, these policies often behave 
poorly in practice.  Most storage benchmarks focus on short-term 
behavior or do not measure fragmentation.  We compare SQL 
Server to NTFS and find that fragmentation dominates 
performance when object sizes exceed 256KB-1MB.  NTFS 
handles fragmentation better than SQL Server.  Although the 
performance curves will vary with other systems and workloads, 
we expect the same interactions between fragmentation and free 
space to apply.   

It is well-known that fragmentation is related to the percentage 
free space.  We found that the ratio of free space to object size 
also impacts performance.  Surprisingly, in both systems, storing 
objects of a single size causes fragmentation, and changing the 
size of write requests affects fragmentation.  These problems 
could be addressed with simple changes to the filesystem and 
database interfaces.  It is our hope that an improved understanding 
of fragmentation will lead to predictable storage systems that 
require less maintenance after deployment. 

Categories and Subject Descriptors 
D.4.3 [File Systems Management], D.4.8 [Performance], H.3.2 
[Information Storage], K.6.2 [Installation Management]  

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
BLOBs, Fragmentation, Filesystem Aging, Object Store, Storage 
Age, Storage Layout, Allocation Events, Benchmark, Filesystem, 
Database.   

1. INTRODUCTION 
Application data objects continue to increase in size.  
Furthermore, the increasing popularity of web services and other 
network applications means that systems that once managed static 
archives of “finished” objects now manage frequently modified 
versions of application data.  Rather than updating these objects in 
place, typical archives either store multiple versions of the objects 
(the V of WebDAV stands for “versioning” [25]), or simply do 
wholesale replacement (as in SharePoint Team Services [19]).  
Similarly, applications such as personal video recorders and 
media subscription servers continuously allocate and delete large, 
transient objects. 

Applications store large objects as some combination of files in 
the filesystem and as BLOBs (binary large objects) in a database.  
Only folklore is available regarding the tradeoffs.  Most designers 
say that a database is probably best for small objects and that that 
files are best for large objects.  However, the breakpoint is fuzzy 
and the underlying causes are unclear. 

This article compares the performance of two different 
implementations of an abstracted write-intensive web application.  
The first implementation uses SQL Server to store the objects as 
BLOBs.  The second uses NTFS to store the objects as files.  We 
measure how performance changes over time as the storage 
becomes fragmented.   

One surprising (to us) conclusion of our work is that storage 
fragmentation is the main determinant of the break-even point 
between the systems.  In essence, the filesystem seems to have 
better fragmentation handling than the database and this drives the 
break-even point down from about 1MB to about 256KB. 

By characterizing the fragmentation behavior of large object 
repositories, we raise a number of important questions that are left 
unaddressed: little is understood about the allocation patterns and 
object lifetimes of these applications, and our experiments reveal 
unexpected interactions between high-level interfaces and storage 
layout policies.  The filesystem and database communities would 
benefit from a mutual understanding of existing techniques and 
fragmentation. 

2. BACKGROUND 
Filesystems have long used sophisticated allocation strategies to 
avoid fragmentation while laying out objects on disk.  For 
example, OS/360’s filesystem was extent based and clustered 
extents to improve access time.  The VMS filesystem included 
similar optimizations and provided a file attribute that allowed 
users to request a (best effort) contiguous layout [9, 13].  Berkeley 
FFS [14] was an early UNIX filesystem that took sequential 
access, seek performance and other hardware characteristics into 
account.  Subsequent filesystems were built with similar goals in 
mind.   

 

This article is published under a Creative Commons License Agreement 
(http://creativecommons.org/licenses/by/2.5/).  
You may copy, distribute, display, and perform the work, make 
derivative works and make commercial use of the work, but you must 
attribute the work to the authors and CIDR 2007.  
3rd Biennial Conference on Innovative Data Systems Research (CIDR)  
January 7-10, 2007, Asilomar, California, USA. 
 

298



The filesystem used in these experiments, NTFS, uses a ‘banded’ 
allocation strategy for metadata, but not for file contents 
[Microsoft NTFS Development Team, Personal Communication].  
NTFS allocates space for file stream data from a run-based lookup 
cache.  Runs of contiguous free clusters are ordered in decreasing 
size and volume offset.  NTFS attempts to satisfy a new space 
allocation from the outer band.  If that fails, large extents within 
the free space cache are used.  If that fails, the file is fragmented.  
Additionally, the NTFS transactional log entry must be committed 
before freed space can be reallocated after file deletion.  The net 
behavior is that file stream data tends to be allocated contiguously 
within a file.   

Databases historically focused on small (100-byte) records and on 
clustering tuples within the same table.  Clustered indexes let 
users control the order in which tuples are stored, allowing 
common queries to be serviced with a sequential scan over the 
data. 

Filesystems and databases take different approaches to modifying 
an existing object.  Filesystems are optimized for appending or 
truncating a file.  When data are inserted or deleted in the middle 
of a file, such as when an element is added to an XML document, 
all contents after the modification must be completely rewritten.  
Some databases completely rewrite modified BLOBs; this rewrite 
is transparent to the application.  Others, such as SQL Server, 
adopt the Exodus design that supports efficient insertion or 
deletion within an object by using B-Tree based storage of large 
objects [4].  In such systems, insertions and deletions within an 
object can lead to fragmentation [3]. 

Hybrid approaches exist as well.  POSTGRES 4 can store BLOBs 
in the filesystem or in database rows, and provides a filesystem-
style interface to applications.  It also supports various 
compression schemes and server side processing of BLOBs [22].  
IBM DB2’s DataLinks technology stores BLOBs in the 
filesystem, and uses the database as an associative index of the 
file metadata [2].  Their files are updated atomically using a 
mechanism similar to safe writes (Section 4).   

3. PRIOR WORK 
We know of few systematic studies of fragmentation and little 
hard data on the actual performance of fragmented systems.  A 
number of benchmarks are impacted by fragmentation, but do not 
measure fragmentation per se.  There are many discussions of 
space allocation algorithms.  However, existing studies do not 
cover recent changes in applications and the increasing popularity 
of databases. 

3.1 Folklore 
There is a wealth of anecdotal experience with applications that 
use large objects.  The prevailing wisdom is that databases are 
better for small objects while filesystems are better for large 
objects.  The boundary between small and large is a bit fuzzy.  
The usual reasoning is:   

• Database queries are faster than file opens.  The overhead of 
opening a file handle dominates performance for small 
objects. 

• While file opens are CPU expensive, they are easily 
amortized over the cost of streaming large objects.   

• Reading or writing large files is faster than accessing large 
database BLOBs.  Filesystems are optimized for streaming 
large objects.   

• Database client interfaces are not designed for large objects.  
Instead, they have been optimized for short low-latency 
requests returning small amounts of data.   

None of the above points address the question of application 
complexity.  Applications that store large objects in the filesystem 
encounter the question of how to keep the database object 
metadata and the filesystem object data synchronized.  A common 
problem is the garbage collection of files that have been “deleted” 
in the database but not the filesystem.  Also missing are 
operational issues such as replication, backup, disaster recovery, 
and fragmentation.   

3.2 Theoretical results 
The bulk of the theoretical work focuses on online schemes that 
always choose a contiguous layout for file data, but that may 
waste space.  Early work bins small files into a set of disk tracks 
so that no file spans more than one track.  This guarantees that 
each file can be read using a single disk seek.  A variant of first fit 
always allocates space that is no more than 1.223 times larger than 
the optimal binning [6].  In the worst case, an optimal layout 
policy that allowed larger files, but still guaranteed that files are 
contiguous would use between 0.5 M log2 n and 0.84 M log2 n 
bytes of storage, where M is the number of bytes of data, and n is 
the maximum file length.  First fit is nearly optimal, using at most 
M log2 n bytes [16].  Unfortunately, for objects in the megabyte to 
gigabyte range, these bounds imply volumes should be roughly 20 
to 30 times larger than the data they store. 

Later work shows that, given some simplifying assumptions, some 
layout policies have acceptable average case performance with 
certain workloads [5].  Allocation algorithms that fragment 
objects are not considered; fragmentation arises only from space 
between objects.  Also, inter-file locality and seek times are not 
considered.   

The question of disk space layout is both similar to and different 
from memory allocation (malloc).  In both cases, space can 
become fragmented and similar simplifying assumptions are often 
made.  Disk space layout differs from memory layout in that the 
cost of a poor layout is larger—a disk seek rather than a cache 
miss—and that the cost of repairing a very fragmented disk is 
larger—a backup restore or total recreation of a database on new 
storage rather than a process restart or system reboot.   

Borrowing from the malloc literature [26], we distinguish between 
allocation mechanisms, such as the buddy system, boundary tags 
and B-trees, and the policies that they approximate, such as best 
fit, and preserving locality of consecutive requests. 

In practice, deallocation patterns can be highly structured.  For 
example, pictures shared for an event are often uploaded and later 
deleted as a group.  Ideally, such deallocation would produce 
large, contiguous regions of free space.  Empirical studies have 
shown that objects malloced at the same time are usually freed at 
the same time.  Therefore, using a large, contiguous region for a 
collection of related allocations tends to preserve the contiguous 
region for eventual reuse. 

Until recently, it was standard practice for theoretical studies to 
assume objects are deallocated randomly.  This allows algorithms 
that ignore structure in file deletion requests to perform well on 
synthetic workloads, and explains why theoretically optimal 
allocation strategies can perform poorly in practice. 
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Applications that concurrently process unrelated requests 
complicate the situation because temporal clustering is no longer 
adequate [1].  Web services encounter multiple groups of users, 
each of which exhibit different behaviors.  For example, the 
allocation patterns of ad hoc sharing and long-term archival differ, 
and members of flash crowds behave in different ways than loyal 
web site visitors. 

Applications that partition data based upon object sizes, expected 
workloads and deallocation patterns, or that use underlying 
storage in degenerate ways (Section 5.4) can also complicate 
matters.  Such behavior may destroy allocation patterns or hide 
them from the storage layer.   

As drive capacity increases, it may be worthwhile to trade 
capacity for predictability and implement persistent storage 
systems that do not support file fragmentation.  For these reasons, 
the relevance of early theoretical results may increase over time. 

3.3 Standard benchmarks 
Most filesystem benchmarking tools consider only the 
performance of clean filesystems and do not evaluate long-term 
performance as the storage system ages and fragments.  Using 
simple initial conditions eliminates potential variation in results 
and reduces the need for settling time to allow the system to reach 
equilibrium. 

Several long-term filesystem fragmentation and performance 
studies have been performed based upon two general approaches 
[18].  Trace based load generation uses data gathered from 
production systems over a long period.  Vector based load 
generation models application behavior as a list of primitives and 
randomly applies each primitive with the frequency of a real 
application.   

NetBench [15] is the most common Windows file server 
benchmark.  It measures the performance of a file server accessed 
by multiple clients using office applications.   

SPC-2 benchmarks storage system applications that read and write 
large files in place, execute large read-only database queries, or 
provide read-only on-demand access to video files [21]. 

The Transaction Processing Performance Council [24] defined 
several benchmark suites to characterize online transaction 
processing workloads and decision support workloads.  These 
benchmarks do not address large objects or multimedia databases.   

None of these benchmarks explicitly consider file fragmentation.   

3.4 Data layout approaches 
The creators of FFS observed that for typical workloads of the 
time, fragmentation avoiding allocation algorithms kept 
fragmentation under control as long as volumes were kept under 
90% full [20].  UNIX variants still reserve a certain amount of 
free space on the drive, both for disaster recovery and in order to 
prevent excess fragmentation.   

The Dartmouth Time-Sharing System (DTSS) file system was 
developed in the 1960’s and used by the Honeywell DPS/8.  It 
lays out files using the buddy system, which imposes hard limits 
on the number of fragments that can be used to store files of 
various lengths.  Although it had good fragmentation behavior, 
the fragmentation limits it imposed were problematic for 
applications that created large files [12]. 

NTFS disk occupancy on deployed Windows systems varies 
widely.  System administrators target disk occupancy as low as 

60% or over 90% [Microsoft NTFS Development Team, Personal 
Communication].  The Windows defragmentation utility supports 
on-line partial defragmentation including system files.   

LFS [17], a log-based filesystem, optimizes for write performance 
by organizing data on disk according to the chronological order of 
the write requests.  This allows it to service write requests 
sequentially but causes severe fragmentation when files are 
updated randomly.  A cleaner that simultaneously defragments the 
disk and reclaims deleted file space can partially address this 
problem.   

XFS [23] is a filesystem designed for large-object storage that 
uses delayed allocation and best fit to avoid fragmentation.  Later 
versions of FFS adopt a similar policy, realloc, which groups 
logically sequential blocks into physically contiguous clusters as 
they are flushed to disk.  The maximum cluster length was 
typically set to the storage system’s maximum transfer size.  The 
realloc allocation policy roughly halved the disk fragmentation 
caused by a trace-based workload generator [20].  Delayed 
allocation was later adopted by other filesystems such as EXT2 
and ReiserFS. 

Network Appliance’s WAFL (“Write Anywhere File Layout”) 
[11] is able to switch between conventional and write-optimized 
file layouts depending on workload conditions.  WAFL also 
leverages NVRAM caching for efficiency and provides access to 
snapshots of older versions of the filesystem contents.  Rather 
than a direct copy-on-write of the data, WAFL metadata remaps 
the file blocks.  A defragmentation utility is supported but is said 
not to be needed until disk occupancy exceeds 90+%. 

While most approaches to fragmentation focus on the number of 
seeks required to read a file, newer drives are divided into zones 
that transfer data at different bandwidths.  An optimal policy for 
placing popular files in faster zones has been developed, along 
with online reorganization to defragment and migrate popular 
files.  Simulations show a 20-40% performance improvement on 
FTP workloads [7].  NTFS’s banded allocation strategy is 
designed to take advantage of disk zones.  Similarly, its 
defragmenter moves application and boot files to faster bands. 

GFS [8], a filesystem designed to deal with multi-gigabyte files 
on 100+ terabyte volumes, addresses the data layout problem by 
using 64MB chunks.  GFS provides a safe record append 
operation that allows multiple simultaneous client appends to the 
same file, reducing the number of files (and opportunities for 
fragmentation) exposed to the underlying filesystem.  GFS 
records may not span chunks, which can result in internal 
fragmentation.  If a record will not fit into the current chunk, that 
chunk is zero padded, and a new chunk is allocated.  Records are 
constrained to be less than ¼ the chunk size to prevent excessive 
internal fragmentation.  However, GFS does not explicitly attempt 
to address fragmentation introduced by the underlying filesystem, 
or to reduce internal fragmentation after records are allocated. 

4. COMPARING FILES AND BLOBS 
Our experiments focused on applications that make use of simple 
get/put storage primitives.  Such applications are quite common 
and include most desktop applications such as word processors, 
collaboration tools such as SharePoint, applications built on top of 
WebDAV, web services such as photo sharing, some web mail 
implementations, and map and GIS services.   

To present a fair comparison of NTFS and SQL Server, we were 
careful to ensure that they provide similar semantics.  Under 
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NTFS, we use safe writes to atomically update objects.  To 
perform a safe write an application writes the object to a 
temporary file, forces that file to be written to disk, and then 
atomically replaces the permanent file with the temporary file.  
Typically, this is done using ReplaceFile() under Windows, or 
rename() under UNIX.   

Under SQL Server, we used bulk logged mode.  In this mode, 
newly allocated BLOBs are written to the page file and forced to 
disk at commit.  This avoids the log write while providing normal 
ACID transactional semantics.  In this way, neither NTFS nor 
SQL Server support BLOB recovery after media failure as there is 
no second copy of the BLOB.   

For simplicity, we did not consider the overhead of detecting and 
correcting silent data corruption and media failures.  These 
overheads are comparable for file and database systems, and 
typically involve maintenance of multiple copies with periodic 
“scrubbing” to detect and correct data corruption. 

Since our purpose was to fairly evaluate the out-of-the-box 
performance of the two storage systems, we did no performance 
tuning except in cases where the default settings introduced gross 
discrepancies in the functionality that the two systems provided. 

4.1 File based storage 
Following the practice of our applications, we stored object names 
and other metadata in SQL server tables.  Each application object 
was stored in its own file.  The files were placed in a single 
directory on an otherwise empty NTFS volume.  SQL was given a 
dedicated log and data drive, and the NTFS volume was accessed 
via UNC path.   

This partitioning is fairly flexible and allows a number of 
replication and load-balancing schemes.  The database isolates the 
client from the physical location of data—changing the pointer in 
the database changes the path returned to the client.   

We chose to measure performance with the database co-located 
with the associated files.  This configuration kept our experiments 
simple and independent of the network layout.  However, we 
structured all code to use the same interfaces and services as a 
networked configuration. 

4.2 Database storage 
The database storage tests were designed to be as similar to the 
filesystem tests as possible.  We stored the BLOBs and the 
metadata in the same filegroup, but we used out-of-row storage 
for the BLOB data so that the BLOBs did not decluster the 
metadata.  Out-of-row storage places BLOB data on pages that do 
not store other table fields, allowing the table data to be kept in 
cache. 

Analogous table schemas and indices were used and only minimal 
changes were made to the software that performed the tests.   

4.3 Workload generation 
The applications of interest are extremely simple from the storage 
point of view.  A series of object allocation, deletion, and 
safe-write updates are processed with interleaved read requests. 

For simplicity, we assumed that all objects are equally likely to be 
written and/or read.  We also assumed that there is no correlation 
among objects.  Recall from Section 3.2 that this simple allocation 
model is inappropriate for any structured real-world workload. 

We measured constant size objects rather than objects with more 
complicated size distributions.  We expected size distribution to 
be an important factor in our experiments.  As discussed below, 
we found that it had no obvious effect on fragmentation behavior.   

We considered more sophisticated synthetic workloads, but 
concluded that the added complexity would not lead to more 
insight.  First, given current understanding of large object 
applications, high-level caches, load balancing and heat-based 
object partitioning, any distribution we chose would be based on 
speculation.  Second, complex workloads often obfuscate simple 
yet important effects by making it difficult to interpret the results.   

4.4 Storage age 
Past fragmentation studies measure age in elapsed time such as 
days or months [20], or in the total amount of work performed [3].  
However, elapsed time is not very meaningful when applied to 
synthetic traces, and measurements of total work performed 
depend on volume size.  We considered reporting age in “hours 
under load”, but this would allow slow storage systems to perform 
less work during the test. 

We measure time using storage age; the ratio of bytes in objects 
that once existed on a volume to the number of bytes in use on the 
volume.  This definition assumes that the amount of free space on 
a volume is relatively constant over time but allows comparison of 
workloads with different distributions of object lifetimes.  Storage 
age is similar to the VIFS performance study’s generations; a new 
generation begins when each file from the previous generation has 
been deleted and replaced [10].   

In a safe-write system, storage age is the ratio of object 
insert-update-delete bytes divided by the number of live object 
bytes.  For our workload, this is “safe writes per object”. 

Given an application trace, storage age can be computed from the 
data allocation rate.  This allows synthetic workloads to be 
compared to trace-based workloads.  Storage age is independent 
of volume size and update strategy.  Therefore it can be compared 
across hardware configurations and applications. 

5. RESULTS 
We used throughput as the primary indicator of performance, and 
started by benchmarking a clean system.  We then looked at the 
longer-term changes caused by fragmentation with a focus on 
256K to 1M object sizes where the filesystem and database have 
comparable performance.  Finally, we discuss the effects of 
volume size and object size distribution. 

5.1 Test system configuration 
All the tests were performed on the system described in Table 1.  
All test code was written using C# in Visual Studio 2005 Beta 2 
and was compiled to x86 code with debugging disabled.   

 

Table 1.  Configuration of the test system 

Tyan S2882 K8S Motherboard,  
1.8 Ghz Opteron 244, 2 GB RAM (ECC) 

SuperMicro “Marvell”  MV8 SATA controller 

4 Seagate 400GB ST3400832AS 7200 rpm SATA drives 

Windows Server 2003 R2 Beta (32 bit mode) 

SQL Server 2005 Beta 2 (32 bit mode) 
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5.2 Initial throughput  
We begin by establishing when a database is clearly the right 
answer and when the filesystem is clearly the right answer.  On a 
clean data store, Figure 1 demonstrates the truth of the folklore: 
objects up to about 1MB are best stored as database BLOBs.  
With 10MB objects, NTFS outperforms SQL Server.  
Interestingly, the write throughput of SQL Server exceeded that of 
NTFS during bulk load.  With 512KB objects, database write 
throughput was 17.7MB/s, while the filesystem only achieved 
10.1MB/s (Figure 4).   

5.3 Performance over time 
Next, we evaluate the performance over time.  If fragmentation is 
important, we expect to see noticeable performance degradation.   

Our first discovery was that SQL Server’s fragmentation reports 
and defragmentation tools handle index data but not large object 
data.  The recommended way to defragment a large BLOB table is 
to create a new table in a new file group, copy the old records to 
the new table and drop the old table [Microsoft SQL Server 
Development Team, Personal communication].   

To measure fragmentation, we tagged each of our objects with a 
unique identifier and a sequence number at 1KB intervals, and 
then determined the physical locations of these markers on the 
hard disk.  We validated this tool against the Windows NTFS 
defragmentation utility by comparing the reports.   

The degradation in read performance for 256K, 512K, and 1MB 
BLOBs is shown in Figure 1.  Each storage age (2 and 4) 
corresponds to the time necessary for the number of updates, 
inserts, or deletes to be N times the number of objects in our store 
since the bulk load (storage age 0).   

For large objects, fragmentation under NTFS begins to level off 
over time, while SQL Server’s fragmentation increases almost 
linearly over time and does not seem to be approaching any 
asymptote (Figure 2).  When we ran on an artificially and 
pathologically fragmented NTFS volume, we found that 
fragmentation slowly decreases over time.  This suggests that 
NTFS is indeed approaching an asymptote.  

These results indicate that as storage age increases, the break-even 
point where NTFS and SQL Server have comparable performance 
declines from 1MB to 256KB.  Within this range, fragmentation 
eventually halves SQL Server’s throughput.  Objects up to about 
256KB are best kept in the database; larger objects should be in 
the filesystem.   

To verify this, we attempted to run both systems until their 
performance converged to comparable steady states.  Figure 3 
indicates that fragmentation in both systems converges to four 
fragments per file, or one fragment per 64KB.  Our tests use 
64KB write requests, suggesting that the impact of the size of file 
creation and append operations upon fragmentation warrants 
further study.  From this data, we conclude that SQL Server’s read 
performance is indeed superior to NTFS on objects under 256KB. 
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Read Throughput After Two Overwrites

0

2

4

6

8

10

12

256K 512K 1M

Object Size

M
B

/s
e

c

Database

Filesystem

 

Read Throughput After Four Overwrites
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Figure 1.  Read throughput.  Immediately after bulk load, 
SQL Server is faster on small objects while NTFS is faster for 

large objects.  As objects are overwritten, fragmentation 
degrades SQL Server’s performance. NTFS eventually 

outperforms SQL Server on objects greater than 256KB. 

Long Term Fragmentation With 10 MB Objects
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Figure 2.  Large object fragmentation.  “Storage Age” is the 
ratio of deleted objects to live objects.  Contiguous objects 

have 1 fragment. 
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Figure 4 shows the degradation in write performance as storage 
age increases.  In both systems, the write throughput during bulk 
load is much better than read throughput immediately afterward.  
Both can simply append each new object to the end of allocated 
storage, avoiding seeks.  On the other hand, the read requests are 
randomized and incur at least one seek.  As the fragmentation 
behavior of the two systems suggests, the write performance of 
SQL Server degrades quickly after bulk load. 

Note that the read and write performance numbers are not directly 
comparable.  The read performance is measured after 
fragmentation, while write performance is measured during 
fragmentation.  For example, the “storage age two” write 
performance is the average write throughput between the “bulk 
load” and “storage age two” read measurements.   

5.4 Fragmentation effects of object size, 
volume capacity, and write request size 
Distributions of object size vary greatly.  Similarly, applications 
are deployed on storage volumes of widely varying size.  This 
section describes the effects of varying object size distributions 
and volume sizes.  All experiments presented here make use of 
objects with a mean size of 10MB. 

Our intuition suggested that constant size objects should not 
fragment.  Best fit, first fit and worst fit all behave optimally on 

this workload—deleting a contiguous object always leaves a 
region of contiguous free space exactly the right size to store any 
other object.  To confirm this, we compared fragmentation 
behavior with a constant object size and with object sizes drawn 
from a uniform distribution.  As shown in Figure 5, our intuition 
was wrong.  As long as the average object size is held constant 
there is little difference—fragmentation is occurring with both 
constant- and uniform-sized objects. 

We believe the fragmentation occurs because NTFS allocates 
space as the file is being appended to, which is before it knows the 
final size.  Also, modifying the size of the write requests that 
append to NTFS files and database BLOB’s changes long-term 
fragmentation behavior, supporting this theory.   

There is no way to pass the (known) object size to the file system 
at file creation and initial space allocation.  NTFS will 
aggressively attempt to allocate contiguous space when sequential 
appends are detected, but there is no guarantee of contiguous 
allocation.  Systems that use deferred allocation partially address 
this problem by implicitly increasing the size of file append 
requests.  These systems trade system memory to buffer write 
requests for improved information about the object’s final size.  
Although changing the allocation interface would improve 
performance for get/put applications, it is unclear what fraction of 
applications these represent.   
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Figure 3.  For small objects, the systems have similar 

fragmentation behavior. 

512K Write Throughput Over Time
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Figure 4.  Although SQL Server quickly fills a volume with 

data, its performance suffers when existing objects are 
replaced. 

Database Fragmentation: Blob Distributions
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Filesystem Fragmentation: Blob Distributions
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Figure 5.  Fragmentation for large (10MB) BLOBs increases 

slowly for NTFS but rapidly for SQL.  Surprisingly, objects of 
a constant size show no better fragmentation performance 
than objects of sizes chosen uniformly at random with the 

same average size. 

During bulk load (zero)                  Two                                Four           
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The time it takes to run the experiments is proportional to the 
volume’s capacity.  When the entire disk capacity (400GB) is 
used, some experiments take a week to complete.  Using a smaller 
(although perhaps unrealistic) volume size allows more 
experiments; but how trustworthy are the results?  

As shown in Figure 6, the exact size of large (40-400GB) volumes 
has a relatively minor effect on performance.  However, on 
smaller volumes, we found that as the ratio of free space to object 
size decreases, performance degrades.  We did not characterize 
the exact point where this becomes a significant issue.  Although 
larger volumes tend to outperform smaller volumes, our results 
suggest that the effect is negligible when there is 10% free space 
on a 40GB volume storing 10MB objects, or a pool of 400 free 
objects.  On a 4GB volume with a pool of 40 free objects, 
performance degraded rapidly.  We found that NTFS is able to 
take advantage of extremely large pools of free objects on 
volumes with low occupancy.  When we keep the volumes 50% 
full, 400GB NTFS volumes converge to 4-5 fragments/object, 
while 40GB volumes converge to 11-12 fragments/object. 

Our results suggest that extremely simple size distributions can be 
representative of many different get/put workloads.  Our simple 
synthetic workload led to easily interpretable system behaviors 
and provided insight that would be difficult to obtain from trace-
based studies.  However, synthetic workloads are unrealistic 
models of real systems.  Trace-based workload generation and a 
better understanding of real-world large object workloads would 
complement this study by allowing for realistic comparisons of 
large object storage techniques. 

6. CONCLUSIONS 
When designing a new system, it is important to consider 
behavior over time instead of looking only at the performance of a 
clean system.  When fragmentation is a significant concern, the 
system must be defragmented regularly.  However, 
defragmentation may require additional application logic and 
imposes read/write performance impacts that can outweigh its 
benefits. 

Using storage age to measure time aids in the comparison of 
different designs.  Here, we use safe-writes per object.  In other 
applications, appends per object or some combination of 
create/append/deletes may be more appropriate.   

For objects larger than 1MB, NTFS has a clear advantage over 
SQL Server.  If the objects are smaller than 256 KB, the database 
has a clear advantage.  Between 256KB and 1MB, storage age 
determines which system performs better. 

The ability to specify the size of the object before initial space 
allocation could reduce fragmentation.  We did not consider 
object update interfaces that allow arbitrary insertion and deletion 
of BLOB ranges; these would lead to different fragmentation 
behavior and application strategies.  Also not considered were 
interleaved append requests to multiple objects, which are likely 
to increase fragmentation. 

Information regarding the performance of fragmented storage is 
scarce, and characterization of other systems will likely provide 
additional insight.  While both SQL Server and NTFS can be 
improved, the impact of such improvements is difficult to gauge 
without a better understanding of real-world deployments.   
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Figure 6.  Fragmentation for 40GB and 400GB volumes.  
Other than the 50% full filesystem run, volume size has little 

impact on fragmentation. 
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