
P2P Web Search: Make It Light, Make It Fly

Matthias Bender, Tom Crecelius, Sebastian Michel, Josiane Xavier Parreira
Max-Planck-Institut für Informatik

Saarbrücken, Germany
{mbender, tcrecel, smichel, jparreir}@mpi-inf.mpg.de

ABSTRACT
We propose a live demonstration of MinervaLight, a P2P
Web search engine. MinervaLight combines the (previously
separate) focused crawler BINGO! (to harvest Web data),
the local search engine TopX, and our P2P Web search
system MINERVA under one common user interface. The
crawler unattendedly downloads and indexes Web data, where
the scope of the focused crawl can be tailored to the thematic
interest profile of the user. The result of this process is a
local search index, which is used by TopX to evaluate user
queries.

In the background, MinervaLight continuously computes
compact statistical synopses that describe a user’s local search
index and publishes that information to a conceptually global,
but physically fully decentralized directory. MinervaLight
offers a search interface where users can submit queries to
MINERVA. Sophisticated query routing strategies are used
to identify the most promising peers for each query based
on the statistical synopses in the directory. The query is
forwarded to those judiciously chosen peers and evaluated
based on their local indexes. These results are sent back to
the query initiator and merged into a single result list. We
give a live demonstration of the fully functional system.

1. INTRODUCTION
Peer-to-Peer (P2P) systems have been a hot topic in var-

ious research communities over the last few years. Many
prototype systems have been implemented, but hardly any
of them has been deployed beyond the scope of medium-
scale dedicated playgrounds (e.g., PlanetLab [19]). Not sur-
prisingly, when the mass media reports on the campaign of
P2P systems today, they typically still showcase early-day
P2P file sharing systems, like Gnutella or Kazaa, which have
gained the connotation of largely distributing illegal content.

In order for an innovative P2P prototype system with a
research background to actually be deployed by non-expert
users on a larger scale, we feel the following three conditions
need to coincide:

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/). You may copy, distribute,
display, and perform the work, make derivative works and make commercial
use of the work, but you must attribute the work to the author and CIDR
2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.
.

• Added value: users must expect substantial improve-
ments in a frequent task.

• Easy deployment: the software must not enforce any
(hardware or software) requirements which are not ful-
filled by off-the-shelf preinstalled computers. It must
be easy to install and run the software for non-expert
users.

• Easy usage: the software must integrate seemlessly
into existing usage patterns, i.e., it should not require
the users to significantly change their current habits.

One of the most frequent tasks performed by computer
users today is searching the Web. The fact that “to google”
has lately become a synonym for searching the Web is not
only due to the fact that Google has been able to deliver
superior search results, but largely also due to the fact that
Google offers a hassle-free user interface that allows non-
experts to easily submit their queries - which immediately
relates to our above requirements.

As the characteristics of a P2P system (unlimited scal-
ability, resilience to network failures and dynamics) offer
enormous potential benefits for data management systems
in general and Web search applications in particular, dis-
tributed information retrieval systems have been a hot re-
search topic. While centralized search indexes are funda-
mentally limited in their coverage of the Web and in the
freshness of the information they provide, using the com-
bined power and knowledge of millions of users and their
PCs makes it possible to provide search results which could
not yet have been updated or indexed at all by a central-
ized service provider. Also beyond centralized Web search
engines, a P2P Web search engine can benefit from the
intellectual input (e.g., bookmarks, query logs, etc.) of a
large user community [5, 13, 12], as every peer in the net-
work is operated by a human user. Finally, but perhaps
even most importantly, a P2P Web search engine can also
facilitate pluralism in informing users about Internet con-
tent, which is crucial in order to preclude the formation
of information-resource monopolies, the biased visibility of
content from economically powerful sources, and politically
motivated censorship.

2. RELATED WORK
Distributed data management systems (and P2P Web search

in particular) have been a hot research topic that has brought
forward many prototype systems [25, 9, 17, 8, 24, 11, 7, 20,
27]. We have previously demonstrated our P2P Web search
engine prototype MINERVA [2, 16].

164



Every time we gave a demonstration, the audience was
amazed and asked for the prototype software. But, MIN-
ERVA is a research prototype that was originally designed
and implemented as an internal tool to evaluate the strate-
gies we develop for query routing and result merging in the
course of our research on P2P Web search. Its user inter-
face with countless parameters was not simple enough for
non-expert users; also the fact that focused crawling and
indexing (BINGO!, [6]), local query execution (TopX [26]),
and distributed searching required three separate applica-
tions with an incompatible look-and-feel discouraged the
users. Additionally, each application relied on a full-fledge
database system (with incompatible schemata) and required
a number of (not always intuitive) parameter settings to
work properly. Distributing this stack of software and get-
ting it to run smoothly on various system platforms turned
out to be a troublesome task.

To overcome these problems and to ease the deployment
of the fruits of our research, we have started a sister project
coined MinervaLight, which we deliberately design for ease
of use. The most notable innovation from a user’s perspec-
tive is the fact that MinervaLight now supports the com-
plete data lifecycle of crawling and indexing Web data, cre-
ating and disseminating statistical synopses, and executing
queries globally under one common user interface. Also, in-
stead of relying on an external database system, it contains
the open-source database engine Cloudscape/Derby1 which
is collectively used by all components and does not require
any installation. Only the most important and intuitive
system parameters of MinervaLight need to be configured
by the user; for many other parameters, we have chosen
appropriate default values. Thus, the barrier of using the
software has dramatically been reduced. Nevertheless, Min-
ervaLight can instantly benefit from all of MINERVA’s re-
search results, including overlap aware query routing [15],
correlation-aware query routing [3], or result merging based
on globally compatible scores[1].

MINERVA was originally layered on top of a home-brewed
re-implementation of Chord [23], which worked fine in the
controlled settings of our lab experiments. In real-world de-
ployments of MINERVA, however, we often ran into system
issues, e.g., caused by firewalls or strange IP configurations.
Instead of reinventing the wheel, MinervaLight now relies
on the mature FreePastry P2P overlay network [22], which
additionally takes care of the directory replication necessary
in order to deal with network dynamics and failures in a dis-
tributed system and can further improve the user-perceived
latencies using caching techniques.

3. SYSTEM ARCHITECTURE
MinervaLight combines the following building blocks un-

der one common graphical user interface. It encapsulates
BINGO! [6], a focused Web crawler that mimics a human
user browsing the Web by only indexing documents that
are thematically related to a predefined set of user interests.
BINGO! is a multi-language parser, i.e., it can detect the
language of documents and restrict the crawl to documents
of a language of choice. BINGO! learns the user interest
profile by running a feature analysis over the bookmarks
that it can import from the user’s Web browser. Within
the user’s interest, BINGO! can further classify the docu-

1http://db.apache.org/derby/

ments it indexes into predefined and automatically trained
categories. Alternatively, BINGO! can instantaneously start
a high-performing, multi-threaded Web crawl from a set
of interactively entered URLs. Crawling is continuously
performed in the background, without manual user inter-
action. BINGO! automatically parses and indexes all ap-
plicable content types (currently text, html, and pdf) to
build a local search index from these documents. It uti-
lizes stemming and stopword elimination. The search in-
dex (in form of inverted index lists) is stored in the embed-
ded Cloudscape/Derby database. Different score values are
computed without any user interaction, to support ranked
retrieval queries. In order to support more sophisticated
document scoring models, BINGO! can compute link-based
authority scores (PageRank, HITS) on its local Web graph.
Non-expert users can easily inspect which pages have been
indexed and browse the pages by category, using Minerva-
Light’s intuitive user interface.

TopX [26] is a search engine for ranked retrieval of XML
(and plain-text) data, developed at the Max-Planck Insti-
tute for Informatics. TopX supports a probabilistic-IR scor-
ing model for full-text content conditions (including phrases,
boolean expressions, negations, and proximity constraints)
and tag-term combinations, path conditions for all XPath
axes as exact or relaxable constraints, and ontology-based
relaxation of terms and tag names as similarity conditions
for ranked retrieval. For speeding up top-k queries, various
techniques are employed: probabilistic models as efficient
score predictors for a variant of the threshold algorithm, ju-
dicious scheduling of sequential accesses for scanning index
lists and random accesses to compute full scores, incremen-
tal merging of index lists for on-demand, self-tuning query
expansion, and a suite of specifically designed, precomputed
indexes to evaluate structural path conditions.

Figure 1: MinervaLight System Architecture

MinervaLight continuously monitors the local search in-
dex and computes compact statistical synopses that describe
the quality of the index w.r.t. particular terms. These syn-
opses contain statistical information about the local search
index, such as the size of the index, the number of distinct
terms in the index, the number of documents containing
a particular term, and optionally elaborate estimators for
score distributions, based on histograms or Poisson mixes.
MinervaLight publishes that information into a fully dis-
tributed directory, effectively building a term → peer di-
rectory, mapping terms to the set of corresponding syn-

165



opses published by peers from across the network. This
directory is significantly smaller than naively distributing a
full-fledge term → document index, which eventually makes
P2P Web search feasible [10]. In order to further limit the
size of the directory, each peer can determine whether it
is a valuable source of information for a particular term,
and only publish synopses for terms if it is considered a
valuable resource for that term [4]. The publishing pro-
cess can also be extended beyond individual terms to also
account for popular key sets or phrases [14]. The direc-
tory implementation is based on Past [21], a freely available
implementation of a distributed hash table (DHT). It uses
FreePastry’s route primitive to support the two hash table
functionalities (insert(key,value) and value←retrieve(key)).
MinervaLight passes (term,synopsis)-tuples to Past, which
transparently stores it at the node in the network that is
currently responsible for the key term. For this purpose,
we have extended Past with bulk insertion functionality, in
order to send batches of statistical synopses instead of send-
ing them individually, greatly reducing the incurred network
overhead. Each directory node maintains a list of all incom-
ing synopses for a randomized subset of keys; this metadata
is additionally replicated to ensure availability in the pres-
ence of network dynamics.

Figure 1 illustrates and summarizes MinervaLight’s sys-
tem architecture.

MinervaLight offers a simple search interface that allows a
user to enter query terms, which (transparently to the user)
starts the global query execution using Past as follows: for
each term appearing in the query, MinervaLight executes
retrieve(term) to retrieve all applicable synopses from the
directory, which serve as the input to query routing, i.e.,
selecting a small subset of promising peers that are most
likely to provide high-quality results for a particular query.
MinervaLight uses FreePastry’s route primitive to send the
user query to these selected peers, which evaluate the query
using their local TopX engines on top of their local indexes
and return their top-matching URLs to the query initia-
tor. MinervaLight appropriately combines the URLs from
these autonomous sources (result merging) and displays the
results to the user. After inspecting the results, the user
can simply click on any result to open the document in the
default Web browser.

In the spirit of social tagging communities, users can man-
ually add arbitrary attribute-value-style annotations by means
of a single mouse click. For example, users might rate doc-
uments with annotations like rating=5. Additional annota-
tions can automatically be generated from the content data,
such as author=bender or conference=CIDR. These anno-
tations are also indexed and become part of the directory
metadata, i.e., users can explicitly query for documents with
rating=5 and even combine this with regular query terms.

We have lately developed the JXP algorithm to efficiently
compute PageRank scores in a distributed environment of
autonomous peers with overlapping local indexes [18]. As
PageRank has repeatedly been shown to improve the user-
perceived result quality, the incorporation of JXP into Min-
ervaLight is expected to increase the result quality beyond
what has so far been achieved with other existing approaches
solely based on statistical synopses or based on PageRank
scores derived from the local partitions of the Web graph at
each peer individually. Preliminary experimental results in
the paper referenced above support this hypothesis.

4. DEMO DESCRIPTION
We give a live demonstration of our P2P Web search sys-

tem MinervaLight, showcasing the complete lifecycle of P2P
Web search. After the demo session, we invite all interested
attendees to explore the features of MinervaLight in more
detail, using their own notebooks.

4.1 Setup
Crawling, indexing, and local search could in principle be

demonstrated by a stand-alone system. We could also show
a movie recorded in our lab. However, we do not consider
any of these alternatives a convincing demonstration of a
P2P Web search prototype. Instead, in order to show the
full beauty and convenience of MinervaLight, we will set
up a live network of MinervaLight instances running on our
notebooks PCs, creating a miniature P2P network. After
the session, a wifi router will enable visitors to connect their
notebooks to our network as well. We will distribute the
software using a USB memory stick. In case there is no
outbound internet connection available, one of our notebook
computers will also run a local Web server with a dump of
Wikipedia documents, so that users can nevertheless crawl
a wide variety of documents “on-line”.

4.2 Crawling and Indexing
The user can import bookmark files containing URLs that

are used as crawl seeds. The seed URLs are downloaded be-
forehand and used in order to build a classifier that can
later-on be used to categorize crawled documents into dif-
ferent fields of interest. When this training phase has been
completed, a simple click on the Crawl -button will start the
Web crawl. If desired, users can set additional crawling op-
tions, such as limiting the crawling to a certain domain or
restricting the crawl depth. The document download and
the indexing of all applicable content (currently text, html,
pdf) proceeds automatically, without any further user inter-
action required. The user can monitor the progress of the
crawl by means of a continuously updated table that fea-
tures a list of the most recently crawled URLs, including
their page titles and categorizations (cf. Figure 2). The
user can also start an illustration of the crawled Web graph
and start the computation of authority-scores based on the
links between the documents (PageRank, HITS). The user
can also stop the Web crawl at any point in time.

4.3 Building and Maintaining Directory
MinervaLight starts to compute statistical synopses de-

scribing the local index harvested from the Web crawl and
publishes that metadata in the distributed directory. For
this purpose, a new overlay network can be instantiated, or
an existing network can be joined by means of a bootstrap
node. For illustrative purposes, MinervaLight also offers a
way of inspecting the portion of metadata that has been
received, i.e., the local “share” of the global directory.

4.4 Annotating Documents
Users can annotate documents with arbitrary attribute-

value pairs, e.g., describing the quality of a document or pro-
viding bibliographic metadata, such as conference=CIDR.
These annotations are also aggregated and published into
the distributed directory. Currently, two query modes are
supported: retrieving all documents with a certain annota-
tion, and retrieving all annotations for a given document.

166



Figure 2: MinervaLight Crawling Interface

4.5 Querying the network
The user can enter keyword queries, e.g., abraham, into an

intuitive search interface (cf. Figure 3). This triggers Miner-
vaLight to retrieve all applicable metadata that is relevant
for this query from the directory and to select the most
promising peers for the query (query routing). Users can
optionally use the metadata inspection functionality intro-
duced above to verify the decision of the system. The query
is forwarded to the selected peers and executed locally. Each
peer indicates all such incoming queries, providing another
way of intuitively following the progress of a query. After
each of these peers has returned its local results to the query
initiator, the results are displayed in form of a single merged
result list that features the URL, the page title, and other
information about the document. Users can inspect this list
and open the documents in their Web browsers by means of
a mouse click.

In order to query annotations, e.g., to retrieve documents
that were annotated as rating=5, the user can simply enter
this query rating=5 into the same form field that has also
been used for keyword queries. Again, MinervaLight will
identify applicable documents based on synopses it retrieves
from the distributed directory.

5. REFERENCES
[1] M. Bender, S. Michel, P. Triantafillou, and

G. Weikum. Global document frequency estimation in
peer-to-peer web search. In WebDB, 2006.

[2] M. Bender, S. Michel, P. Triantafillou, G. Weikum,

and C. Zimmer. Minerva: Collaborative p2p search. In
VLDB, 2005.

[3] M. Bender, S. Michel, P. Triantafillou, G. Weikum,
and C. Zimmer. P2p content search: Give the web
back to the people. In IPTPS, 2006.

[4] M. Bender, S. Michel, and G. Weikum. P2p directories
for distributed web search: From each according to his
ability, to each according to his needs. In WIRI, 2006.

[5] M. Bender, S. Michel, C. Zimmer, and G. Weikum.
Bookmark-driven query routing in peer-to-peer Web
search. In P2PIR, 2004.

[6] Bookmark-Induced Gathering of Information with
Adaptive Classification into Personalized Ontologies.
http://www.mpi-
sb.mpg.de/units/ag5/software/bingo/.

[7] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In ICDCS, 2002.

[8] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and
T. D. Nguyen. Planetp: Using gossiping to build
content addressable peer-to-peer information sharing
communities. In HPDC, 2003.

[9] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo,
P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and
A. R. Yumerefendi. The architecture of pier: an
internet-scale query processor. In CIDR, 2005.

[10] J. Li, B. Loo, J. Hellerstein, M. Kaashoek, D. Karger,
and R. Morris On the Feasibility of Peer-to-Peer Web
Indexing and Search. In IPTPS, 2003.

167



Figure 3: MinervaLight Search Interface

[11] J. Lu and J. Callan. Federated search of text-based
digital libraries in hierarchical peer-to-peer networks.
In ECIR, 2005.

[12] J. Luxenburger and G. Weikum. Query-log based
authority analysis for web information search. In
WISE, 2004.

[13] J. Luxenburger and G. Weikum. Exploiting
community behavior for enhanced link analysis and
web search. In WebDB 2006, 2006.

[14] S. Michel, M. Bender, N. Ntarmos, P. Triantafillou,
G. Weikum, and C. Zimmer. Discovering and
exploiting keyword and attribute-value co-occurrences
to improve P2P routing indices. In CIKM), 2006.

[15] S. Michel, M. Bender, P. Triantafillou, and
G. Weikum. Iqn routing: Integrating quality and
novelty in p2p querying and ranking. In EDBT, 2006.

[16] S. Michel, M. Bender, P. Triantafillou, G. Weikum,
and C. Zimmer. P2P web search with MINERVA:
How do you want to search tomorrow? (demo). In
Middleware, 2005.

[17] H. Nottelmann, G. Fischer, A. Titarenko, and
A. Nurzenski. An integrated approach for searching
and browsing in heterogeneous peer-to-peer networks.
In HDIR, 2005.

[18] J. X. Parreira, D. Donato, S. Michel, and G. Weikum.
Efficient and decentralized pagerank approximation in
a peer-to-peer web search network. In VLDB, 2006.

[19] L. L. Peterson and T. Roscoe. The design principles of
planetlab. Operating Systems Review, 40(1):11–16,

2006.
[20] P. Reynolds and A. Vahdat. Efficient peer-to-peer

keyword searching. In Middleware, 2003.
[21] A. Rowstron and P. Druschel. Pastry: Scalable,

Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In Middleware,
2001.

[22] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware, 2001.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In
SIGCOMM, 2001.

[24] T. Suel, C. Mathur, J. wen Wu, J. Zhang, A. Delis,
M. Kharrazi, X. Long, and K. Shanmugasundaram.
Odissea: A peer-to-peer architecture for scalable web
search and information retrieval. In WebDB, 2003.

[25] C. Tang and S. Dwarkadas. Hybrid global-local
indexing for efficient peer-to-peer information
retrieval. In NSDI, 2004.

[26] M. Theobald, R. Schenkel, and G. Weikum. An
efficient and versatile query engine for topX search. In
VLDB), 2005.

[27] Y. Wang, L. Galanis, and D. J. de Witt. Galanx: An
efficient peer-to-peer search engine system. Available
at http://www.cs.wisc.edu/ yuanwang.

168


