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Abstract

We introduce a system to address the chal-
lenges involved in managing the multidimen-
sional sensor data streams generated within
immersive environments. We call this data
type, immersidata, which is de�ned as the
data acquired from a user's interactions with
an immersive environment. Management of
immersidata is challenging because they are:
1) multidimensional, 2) spatio-temporal, 3)
continuous data streams (CDS), 4) large in
size and bandwidth requirements, and 5)
noisy.

By focusing on two speci�c applications,
Attention De�cit Hyperactivity Disorder
(ADHD) diagnosis and American Sign Lan-
guage (ASL) recognition, we propose to study
the challenges of two main modes of oper-
ations on immersidata: o�-line and online
query and analysis. In addition, we pro-
pose complementary approaches for e�cient
acquisition and storage of immersidata. The
core promising idea behind our proposed ap-
proaches is a `database friendly' utilization of
linear algebraic transformations on both data
sets and queries to e�ciently abstract, ag-
gregate, classify and/or approximate multidi-
mensional data streams.
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1 Introduction

With Immersive Environments, a user is immersed
into an augmented or virtual reality environment in
order to interact with people, objects, places, and
databases. In order to facilitate a natural interac-
tion (beyond keyboard and mouse), the users in typi-
cal immersive environments are traced and monitored
through various sensory devices such as: tracking de-
vices on their heads, hands, and legs, video cameras
and haptic devices. Immersive sensors are the user
interfaces of the future; as a research community we
should study their generated data or we will miss the
boat. To de�ne this data type, in an earlier publi-
cation [26], we coined the term immersidata as the
data acquired from a user's interactions with an im-
mersive environment. Immersidata can be considered
as several continuous data streams (CDS) generated
by several sensors in an immersive environment.

Management of immersidata becomes crucial as the
number of immersive applications grows and as they
become more common. Due to speci�c characteristics
of the immersidata, its management requires database
expertise combined with signal processing and contin-
uous math 
avors. Immersive applications have ample
commondata management needs, justifying the design
of a general-purpose system for management of immer-
sidata. The grand challenge is to design this system in
such a way that incorporates decades of experience in
dealing with signals, rather than reinventing the wheel.

1.1 Motivation

While researchers in the areas of graphics and human-
computer-interfaces (HCI) have been investigating the
interaction aspects of the immersive sensors and track-
ers, we are not aware of any work in recording and stor-
ing immersidata for future query and analysis. We be-
lieve an immersidata set is a rich source of information
by analyzing which one can learn about users' behav-
iors in immersive applications. This in turn can serve
several important purposes such as conducting human
factor studies, enablingmore natural interaction meth-
ods, improving the performance of the system compo-



nents, customizing the environment towards a user's
preferences, and identifying 
aws and pitfalls of the
environment.

To illustrate, consider the analogous scenario of web
usage analysis. With the WWW, keyboard strokes and
mouse clicks have been the dominant modes of inter-
action with webpages since late 1980's. However, it
was not until mid 1990's that the database commu-
nity realized the richness of the large volumes of us-
age data collected from these clickstreams. We were
among the pioneers in the web-usage mining research
area (from [31] to [25]) and hence it is natural to extend
our research to the analysis of immersidata collected
from immersive sensors.

To be speci�c, we discuss two examples of immer-
sive applications in Sec. 2 with which we have been
involved for the last two years. One of these appli-
cations focuses on the o�-line querying of immersi-
data, by which we mean that the data are collected
beforehand and stored in a database for future query
and analysis. We demonstrate that in a very interest-
ing setting, analyzing multidimensional immersidata
helps experts for better diagnosis of Attention De�cit
Hyperactivity Disorder (ADHD) in children. The sec-
ond applicationmotivates online querying and analysis
of immersidata in order to recognize users' hand and
body motions. For this application, we need to analyze
aggregate streams of sensor/tracker data in real-time
to match the motions to a library of known motions.

Note that the size of immersidata can potentially
grow very large as the immersive applications become
more and more common. Current immersive interfaces
can generate an average of 40 K-Bytes per second to
capture body motions of a single user. For example, a
CyberGlove, which is a virtual reality glove that cap-
tures a single hand's motions, has 28 sensors with 100
Hz sampling rate. Compare this per user rate with
the rate that a single user can generate clickstreams
on the web or that of any other current data stream
application, and the exponential di�erence in data size
and rate would become obvious1.

1.2 Contributions

We propose the design of an immersive sensor data
streams management system as depicted in Fig. 1.
Towards this end, we focus our research on four ma-
jor system components: 1) acquisition, 2) storage, 3)
o�-line query and analysis, and 4) online query and
analysis subsystems. In this paper, we use the terms
immersidata, sensor data streams and multidimen-
sional data interchangeably to refer to the same type
of data, depending on the speci�c aspect on which we
want to emphasize. Consider each component in turn.

1Of course this rate is much less than video data rates; how-
ever, the challenges in video streaming applications are di�erent
than those we have focused on in the area of query and analysis
on data streams.
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Figure 1: AIMS block diagram

Acquisition: The main challenge in acquisition of
immersidata is that similar to any other physical sig-
nal, it needs to be cleaned from noise (�ltered) and
be abstracted for analysis (transformed). Our prior
experiences with this data set [27, 29] show that con-
ventional signal processing techniques are su�ciently
e�ective. Therefore, we propose to focus on selecting
a signal processing technique that would be `database
friendly' for our future query and analysis proposes.
Our approach is to study a general basis library, Dis-
crete Wavelet Packet Transform (DWPT), to automat-
ically select and apply di�erent transformations on dif-
ferent dimensions.

Storage: To store the transformed data, the chal-
lenge is in the design of the physical level of the storage
system. Since we are storing wavelets, we need to �nd
an optimalmethod to pack related coe�cients together
on a disk block to bene�t from the locality of reference.
Our studies suggest a theoretical upper-bound on the
utilization we can expect from a wavelet disk block.
Our approach is to study the access patterns of our
queries in order to design an allocation strategy that
comes as close to the upper-bound as possible.

O�-line Query and Analysis: Since in this case
the immersidata are already acquired, transformed
and stored, we do not need to worry about the stream-
ing aspect of the data. However, we still need to
support e�cient queries, perhaps even approximate
and/or progressive queries, on this bulky multidimen-
sional data set. Here, we intend to extend our work
in supporting progressive and approximate polyno-
mial range-aggregate queries for OnLine Analytical
Processing (OLAP) applications. In particular, we
want to extend and generalize our ProPolyne tech-
nique [24, 23] to support arbitrary queries on immer-
sidata. The encouraging news here is that ProPolyne
is originally designed to work on wavelet transformed



multidimensional data. The challenge, however, is
that ProPolyne does not yet know how to deal with
transformed data where each dimension is transformed
through a di�erent basis.

Online Query and Analysis: This component
faces the most challenging aspect of immersidata and
heavily relies upon the previous three research ac-
tivities. The main challenge here is as if we need
to perform real-time pattern recognition on aggrega-
tion of several data streams that are incrementally
completing! In addition to typical challenges of con-
tinuous data streams (CDS) where: 1) queries must
be answered based on limited amount of information
rather than the entire dataset, and 2) the data can be
looked at only once due to the real-time constraints,
there are two other challenges as follow. First, queries
need to operate on aggregate information from sev-
eral sources/sensors. Data from each individual sen-
sor do not make much sense for us, rather data from
all sensors together form a meaningful point in the
hand (or body) motion trajectory. This is harder than
the case for general CDS with data coming from dis-
tributed sources, where a loose aggregation is needed
for the computation. In our case a much tighter aggre-
gation is needed, which essentially renders our prob-
lem to be a high dimensional one. Second, a mean-
ingful hand/body motion is formed by a sequence of
data samples, rather than individual data samples oc-
curring in a data stream. In addition, a sequence
for one hand motion has no �xed length, as di�er-
ent persons may �nish a hand motion with di�erent
time durations while the data rate of the sensors are
�xed. Hence, one needs to separate a series of vari-
able length motions into individual and recognizable
actions. Our previous e�orts [28, 5] in pattern recog-
nition from this data set focused on using conventional
learning techniques such as Bayesian Classi�ers, Deci-
sion Trees and Neural Nets. However, these techniques
are not appropriate for streaming data and only work
well when the whole data is available. Hence, we pro-
pose a new approach that would address aggregation,
dimensionality reduction and pattern matching chal-
lenges in one shot. We also propose to utilize a con-
cept from information-theory to address the challenge
of incrementally completing signals. Another concern
is to make these techniques work directly in (wavelet)
transformed domain so that we can utilize our acquisi-
tion, storage and ProPolyne techniques. In Sec. 3.4.1,
we show that this is doable.

2 Motivating Applications

To motivate the main two modes of query and anal-
ysis, o�-line and online, we focus on two speci�c ap-
plications we have been involved with for the past two
years. Consider each application in turn.

a. ADHD subject b. Virtual classroom

Figure 2: ADHD Immersive Environment

2.1 ADHD Diagnosis: O�-line Query and

Analysis

We have been working with a human factor scientist
on an interesting application [22]. Within a 3-D im-
mersive environment, Virtual Classroom, a group of
normal and ADHD-diagnosed (Attention De�cit Hy-
peractivity Disorder) children are subjects to do par-
ticular attention tasks (see Fig. 2a). The application
objective is to di�erentiate between these two groups
of subjects by analyzing their interactions with the
environment. The environment consists of a typical
classroom containing student desks, a teacher's desk, a
virtual teacher, a blackboard, a large window looking
out onto a playground with buildings, vehicles, and
people, and a pair of doorways on each end of the
wall opposite the window through which activity oc-
curs (see Fig. 2b).

A typical task consists of alphabetical characters
being displayed on the blackboard and having the child
press a button when a particular pattern is seen. In
one of our designed tasks, the AX task, the subject is
instructed to press mouse button as quickly as possible
upon detecting an X after an A (a hit) and withhold
their response to any other pattern. At the same time,
a series of typical classroom distractions are systemat-
ically manipulated within the environment (i.e., ambi-
ent classroom noise, paper airplane 
ying around the
room, students walking into the room, activity occur-
ring outside the window). During the test, the track-
ers placed on the head, hands and legs monitor body
movements of the child and stream the data contin-
uously. Each tracker data consists of 6 dimensions:
X, Y and Z values corresponding to tracker position
in the space and H, P and R parameters representing
tracker rotation corresponding to the Y, X and Z axis,
respectively. Therefore, the data set in general has 8
dimensions: in addition to the above mentioned 6 val-
ues, there are the time-stamp and sensor-id attributes.

After collecting immersidata from several tests, psy-
chologists would like to ask a variety of queries over
the stored data set. This is why we call this o�-line
query and analysis because the queries happen post-
application on the collected immersidata. The queries
can be as simple as: \Which distraction was around



when a particular child missed a question?" to most
complex queries such as \Automatically distinguish
hyperactive kids from normal ones." Actually, in our
preliminary experiments, we successfully (with 86%
accuracy) distinguished hyperactive kids from normal
ones by using a Support Vector Machine (SVM) on the
motion speed of di�erent trackers. Alternatively, the
set of answers to task questions may be represented
as a feature vector per subject that can be classi�ed
in order to di�erentiate between normal and ADHD-
diagnosed subjects. Later in Sec. 3.4.1, we argue that
this sort of statistical analysis can be performed in
the wavelet domain more e�ciently. Another type of
query is the polynomial range-sum queries (as will be
discussed in Sec. 3.3) such as: \What is the average
response time during a speci�c task for each child?" or
\Is there a correlation (i.e., covariance) between hits
(or misses) and subject's attention period to distrac-
tions?"

2.2 ASL Recognition: Online Query and

Analysis
An immersive application can receive input commands
through hand and/or body motions as opposed (or in
addition to) mouse clicks and keyboard strokes. The
main challenge would be to extract in real-time an
atomic motion and then recognize the motion by com-
paring it with a known library of motions, termed vo-
cabulary. Due to lack of well-de�ned vocabulary of
motions for an immersive application2, we focus on
recognizing American Sign Language (ASL) signs as
examples of well-de�ned hand motions. In this appli-
cation, user hand motions are captured via a sensor-
equipped virtual reality glove, called CyberGlove (see
Fig. 3a).

ASL is a complex visual-spatial language used by
vocally or aurally disabled persons in the U.S. and
Canada. ASL uses hand gestures, hand movements,
or facial expressions to convey meanings such as the
English Alphabet, numerals, colors, and so on. An
ASL sign is a language unit in ASL, just like a letter
or a word with speci�c meaning in English. According
to ASL rules, there are no hand movements involved in
most of the Alphabet letter signs (see Fig. 3b); how-
ever, hand movements are required for representing
ASL words and color signs. For example, color green
(or yellow) is conveyed using hand shape of that of
letter \G" (or \Y") with the wrist twisting twice.

There are 22 sensors at di�erent positions of the
glove to generate the data representing the angle of
joints at di�erent parts of a hand (see Fig. 3a). The
detailed description of these sensors included with the
CyberGlove device are provided in Table 1. In addition
to CyberGlove, there is a device called the Polhemus
Tracker, which is located on the wrist to measure the

2An example of such a visionary application has been illus-
trated in a recently released movie, Minority Report, where the
main character, Tom Cruise, interacts with a video-browsing
application through hand motions and voice.

a. CyberGlove: Joint angles b. Some ASL signs
are measured at positions

marked with a circle

Figure 3: ASL Immersive Environment

hand position (in terms of values for X, Y, and Z co-
ordinates relative to an initial setting) and the hand
rotation (in terms of rotation of the palm plane to the
X-Y, Y-Z and Z-X planes). In sum, the device software
uses the angles to model a human hand, and uses the
tracker values to determine the hand motion trajec-
tory; collectively the data from the 28 sensors capture
the entirety of a hand motion.

The application takes samples of these data at each
sensor clock, which is about 0.01 second. These sam-
ples constitute the immersidata in this application
which is intrinsically high dimensional. The main
query in this application is to recognize signs in partic-
ular, or speci�c hand motions in general. This query is
imposed on sensor data streams as they become avail-
able and needs to be answered in real-time, hence mo-
tivating the on-line query and analysis mode.

3 AIMS System Components

The two applications discussed in Sec. 2, as well as
many other immersive applications in training and
simulation domains, share common data manage-
ment requirements that cannot be met by conven-
tional databases3. We argue that instead of build-
ing a customized system for the data management
needs of each immersive application, one can design
a general-purpose system providing many of the re-
quired functionalities. This is the purpose of AIMS,
An ImmersidataManagement Ssytem.

AIMS speci�cally focuses on the importance of un-
derstanding the user behavior in the immersive envi-
ronments. Consequently, AIMS provides support to
collect as much information as possible from the user
interactions with the environment. In addition, it pro-
vides support for real-time recognition of user's im-
mersive commands as well as query support of the
immersidata for future data analysis. In particular,
with AIMS, we intend to provide the following com-
mon functionalities in support of immersive applica-
tions.

1. Acquisition of multiple immersive sensor streams
and their appropriate transformation for both

3For a description of the shared data-types across these im-
mersive applications see reference [30].



Sensor number Sensor description

1 thumb roll sensor

2 thumb inner joint

3 thumb outer joint
4 thumb-index abduction

5 index inner joint

6 index middle joint
7 index outer joint

8 middle inner joint

9 middle middle joint
10 middle outer joint

11 middle-index abduction

Sensor number Sensor description

12 ring inner joint

13 ring middle joint

14 ring outer joint
15 ring-middle abduction

16 pinky inner joint

17 pinky middle joint
18 pinky outer joint

19 pinky-ring abduction

20 palm arch
21 wrist flexion

22 wrist abduction

Table 1: CyberGrasp Sensors

real-time and future query and analysis.

2. E�cient storage of transformed signals in disk
blocks or database BLOBs.

3. Progressive and approximate evaluation of poly-
nomial analytical queries on the stored and trans-
formed signals in support of future data mining
tasks.

4. Real-time recognition of abstract commands from
spatio-temporal aggregation of several trans-
formed sensor streams.

In this section, we discuss the four components or
subsystems of AIMS in support of each of the above-
mentioned functionalities.

3.1 Acquisition

The �rst step in managing immersidata is to acquire
sensor data streams and store them for the purpose
of future query and analysis. A major challenge with
data acquisition is the vast amount of noisy data gen-
erated in real time by various sensors. The question
is how fast one should record a sensor value. A naive
approach may record the sensor status as fast as the
acquisition system (both hardware and software) can
operate. The intuition is that the more samples we col-
lect, the more accurate the acquisition of the occurred
event. On the other hand, due to either device limita-
tions or nature of the human motion, the value/status
of a sensor might not change as fast as the system is
sampling it. Hence, the higher than needed sampling
rate will result in more power consumption, storage
space and bandwidth requirements for the acquisition
task without providing any useful information. Ac-
quiring immersidata becomes even more complicated
if we consider that the optimal sampling rate also de-
pends on both the speci�c sensor being sampled and
the immersive session being recorded.

We conducted several experiments [27] with real im-
mersive sensors to understand di�erent factors that
impact the sampling rate of immersive sensory data.
In our experiments, we used the CyberGlove Software
Development Kit (SDK) to write handlers that record
sensor data from a virtual reality glove (the same as in
Figure 3a) whenever a particular sampling interrupt
was called. The rate at which these handlers were
called - thus, the maximum rate we could sample -
varied as a function of the CPU speed.

To sample and record data asynchronously, we de-
veloped a simple multi-threaded double bu�ering ap-
proach. One thread was associated with answering
the handler call and copying sensor data into a re-
gion of system memory. A second thread worked asyn-
chronously to process and store that data to disk. The
CPU was never 100% busy during this process, so we
do not believe our recording strategy interfered with
the rendering process itself. Furthermore, there is ob-
vious room for optimization here: we could run our
experiments on dual-processor machines and we could
also adjust the thread priorities for the second thread.

To maintain accuracy, our sampling techniques are
based on the Nyquist theorem [19], which states that
a signal must be sampled with a rate twice as fast
as the maximum frequency in the signal in order to
reconstruct it: rnyquist = 2fmax.

The standard discrete Fourier transform, auto-
correlation, and minimum square error techniques
were applied to each signal to identify fmax within
a speci�ed con�dence threshold. Our work focuses on
determining when to make these calculations. In par-
ticular, we developed four alternative sampling tech-
niques: Fixed, Modi�ed Fixed, Grouped and Adap-
tive Sampling. The �rst two �x the sampling rate at
the largest common denominator across all sensors.
Grouped sampling strives to improve on this by clus-
tering similar sensors (in rates) and use a �x rate per
cluster. Finally, adaptive sampling considers the im-
mersive session information as well (within a sliding
window) and samples according to the level of activity
within the session window.

We compared the bandwidth requirement of our
four proposed sampling technique. We observed that
adaptive sampling requires far less bandwidth (and
storage) as compared to the other techniques. When
compared with a block-based compression technique,
e.g., Unix zip software (based on Ho�man coding),
adaptive sampling provides superior savings. Later,
in a follow-up study [29], we investigated other con-
ventional compression techniques, such as quantiza-
tion techniques (e.g., Adaptive DPCM). We also com-
bined the above mentioned sampling approaches with
ADPCM technique and conducted several experiments
to compare the accuracy and e�ciency of our dif-
ferent immersidata sampling and compression tech-
niques. The results showed that we only get marginal
improvement by combining ADPCM with adaptive
sampling.



3.1.1 Multi-Bases Transformation

The main lesson learned from our studies on immer-
sidata acquisition [27, 29] is that conventional sig-
nal processing techniques are good enough for this
data type because after all they behave like any
other physical signal. Hence, the choice of the sam-
pling/transformation technique must be determined
elsewhere. As we discuss later in Sec. 3.3.1, we need to
select a technique that is consistent with our query and
analysis modules. In particular, we propose to select
a transformation basis per dimension from a general
transformation library, Discrete Wavelet Packet Trans-
form (DWPT) [36], to achieve real-time acquisition
and sampling of immersidata. There are three impor-
tant reasons for this decision. First, DWPT is a gen-
eralization of wavelet transform that includes wavelet
coe�cients as well as summary and details of details at
di�erent levels. Hence, by recursively applying a sum-
mary and a detail �lter on both summaries and details,
DWPT quickly computes a large amount of informa-
tion about the space and frequency characteristics of a
function at di�erent scales. It is important to note that
the Fourier transform, which showed promise in sam-
pling of immersidata in our previous studies, is also a
subset of DWPT4. Second, the complexity of wavelet
transformation for incremental update (append) is low
making wavelets the appropriate choice given the con-
tinuous data stream nature of immersidata, which is
append only. Third, as we illustrate later in Sec. 3.3,
we can perform statistical queries and analysis directly
on wavelets much more e�ciently than on raw data
samples. Therefore, storing immersidata as wavelets
does not require any extra overhead of reverse trans-
formation at the query time. Note that each dimension
requires its own transformation which may be di�er-
ent from others. To illustrate, consider a database of
immersive data with schema (sensor id, x,y,z, time,
sensor value). Suppose a sensor is con�ned to a lim-
ited area possibly a single point in space. Hence, if we
project away the time and sensor value dimensions, we
will have a relatively small result set. Consequently,
we may want to use the standard basis (i.e., no trans-
form) on the small relation (sensor id, x,y,z) and use
wavelets on the others. In addition, the selected basis
per dimension from DWPT must be consistent with
those needed by the query engine. Sec. 3.3.1 discusses
a hybridization approach that selects the basis per di-
mension for storage and query, identically.

3.2 Storage

In an earlier study [5], we investigated four di�erent
techniques to store immersive sensor data streams in
an object-relational database. We conducted several
experiments with real data sets to compare the query

4The last level of a (1�d) DWPT on a space with 2j elements
corresponds to the DFT on the j-dimensional space f0;1gj.

response times on our four di�erent representations.
The results showed that for the type of queries mainly
submitted by immersive applications, it is more appro-
priate to store all the samples from di�erent sensors
for a given time frame in one storage unit. In that
study, since we were building our representations on
top of the relational model, the storage unit was a tu-
ple. However, the main lesson learned from that study
was that we were looking at the wrong level of abstrac-
tion (i.e., conceptual level). Instead, we should have
looked at the physical level and decide what group
of samples should be stored together on a disk block.
Therefore, we propose a disk level storage technique
for this multidimensional sensory data.

3.2.1 Disk Level Storage of Immersidata

The main lesson learned from our studies on immersi-
data storage is that new design is required at the phys-
ical level to place related immersidata samples into
one disk block. Given our previous decision on stor-
ing immersidata in wavelet domain, we need to devise
an optimal technique for grouping related wavelets.
Actually, recent work suggests even stronger reasons
for us to be interested in e�cient storage of wavelet
data. By storing a wavelet representation of a relation
or data cube instead of a tabular representation, one
can provide fast approximate [34], exact, and progres-
sive [24, 23] range aggregate query support.

Generally, in order to speedup the I/O, the gran-
ularity of disk access is made large, and each read of
the disk brings back a disk block rather than an in-
dividual byte or number. Thanks to the principle of
locality of reference, we often �nd that when an appli-
cation needs to access one datum on a disk block, it is
likely to need to access other data on the same block.
By designing applications to take advantage of this,
we can amortize the cost of disk access over multiple
reads, signi�cantly reducing the total I/O cost.

The question we propose to answer is: Is there a
principle of locality of reference for wavelet data? Or
more precisely, is there a way we can store wavelet data
to create such a principle? Our preliminary studies
showed that we can, and that for common access pat-
terns we have a much stronger principle. It turns out
that for point and range queries, if a wavelet coe�cient
is retrieved, we are guaranteed that all of its depen-
dent coe�cients will also be retrieved. The challenge
is that distinct coe�cients will have common depen-
dents. In order to make immersive applications that
rely on access to wavelet data scalable, we must take
full advantage of this unique access pattern.

In particular, we plan to study the access patterns
required for processing queries and updates on wavelet
data. Our initial study on the space of all possi-
ble (non-redundant) allocations of these data to disk
blocks suggests the following: For all disk blocks of
size B, if a block must be retrieved to answer a query,



the expected number of needed items on the block is
less than 1+lgB. We use this theoretical upper-bound
as our success metric and design a technique for allo-
cation of wavelet coe�cients to disk blocks that can
approach this upper-bound. Our optimal disk alloca-
tion technique is based on optimal tiling of the corre-
sponding one dimensional wavelet error tree. This one
dimensional optimal disk block allocation can subse-
quently be used to construct optimal allocations for
(tensor product) multivariate wavelets. We simply de-
compose each dimension into optimal virtual blocks,
and take the Cartesian products of these virtual blocks
to be our actual blocks. Finally, we can de�ne a query
dependent importance function on disk blocks (e.g.,
minimizing worst-case or average error), which would
allow us to perform the most valuable I/O's �rst and
deliver approximate results progressively during query
evaluation. In other words, this extends our ProPolyne
technique discussed in Sec. 3.3 to work with block
wavelets.

3.2.2 Related Work

The idea of storing immersidata as wavelet blocks
arose out of our e�orts to use wavelet-based oper-
ator approximation for approximate query answer-
ing [24, 23]. While developing these methods, it be-
came clear that e�cient disk access would be neces-
sary for any practical system. Most uses of wavelets
for databases have taken a di�erent approach, focus-
ing on data approximation instead [34]. Recent work
in this area has provided elegant techniques for pro-
ducing wavelet synopses of data streams [10], and de-
signing synopses to control relative error of point and
range queries [7]. All of the data approximation tech-
niques assume that the compressed dataset will �t in
main memory or be scanned from disk in its entirety.
To our knowledge, e�cient disk placement of wavelet
data has not been explored before this work.

3.3 O�-line Query and Analysis

Once the multidimensional immersidata are captured,
transformed and stored as disk blocks, it is time for
providing query and analysis support on this data
type. We focus our attention on two modes of query
and analysis: o�-line and online. In the o�-line mode,
the data in their entirety are already captured and
stored on persistent storage. This mode of operation
is useful for post-application analysis of the data, as in
the case of the ADHD study (see Sec. 2.1). With this
mode, the challenge is how to support e�cient statis-
tical queries on this multidimensional and bulky data
set.

In the past two years, we have been investigating
e�cient techniques to support range-sum queries on
large multidimensional data sets. This problem is
identical to the one studied in the area of OnLine
Analytical Processing (OLAP). We have introduced

a novel MOLAP (Multidimensional OLAP) technique
that can support any polynomial range-sum query (up
to a degree speci�ed when the database is populated)
using a single set of precomputed aggregates. This
extra power comes with little extra cost: the query,
update, and storage costs are comparable to the best
known MOLAP techniques (see [24]). We achieve this
by observing that polynomial range-sums can be trans-
lated and evaluated in the wavelet domain. When
the wavelet �lter is chosen to satisfy an appropriate
moment condition, most of the query wavelet coe�-
cients vanish making the query evaluation faster. We
made this observation practical by introducing the
lazy wavelet transform, an algorithm that translates
polynomial range-sums to the wavelet domain in poly-
logarithmic time.

Wavelets are often thought of as a data approxi-
mation tool, and have been used this way for approx-
imate range query answering [34, 32, 3, 9]. The ef-
�cacy of this approach is highly data dependent; it
only works when the data have a concise wavelet ap-
proximation. Furthermore the wavelet approximation
is di�cult to maintain. To avoid these problems, we
use wavelets to approximate incoming queries rather
than the underlying data5. By using our exact polyno-
mial range-sum technique, but using the largest query
wavelet coe�cients �rst, we are able to obtain accu-
rate, data-independent query approximations after a
small number of I/Os. This approach naturally leads
to a progressive algorithm. We brought these ideas to-
gether by introducing ProPolyne (Progressive Polyno-
mial Range-Sum Evaluator), a polynomial range-sum
evaluation method which

1. Treats all dimensions, including measure dimen-
sions, symmetrically and supports range-sum
queries where the measure is any polynomial in
the data dimensions (not only COUNT, SUM
and AVERAGE, but also VARIANCE, COVARI-
ANCE and more). All computations are per-
formed entirely in the wavelet domain.

2. Uses the lazy wavelet transform to achieve query
and update cost comparable to the best known
exact techniques.

3. By using the most important query wavelet coe�-
cients �rst, provides excellent approximate results
and guaranteed error bounds with very little I/O
and computational overhead, reaching low rela-
tive error far more quickly than analogous data
compression methods.

Our experimental results on several empirical
datasets showed that the approximate results pro-
duced by ProPolyne are very accurate long before the
exact query evaluation is complete. These experiments

5Note that the data set is still transformed using wavelet;
however, it is not approximated since we keep all the coe�cients.



also showed that the performance of wavelet based
data approximation methods varies wildly with the
dataset, while query approximation based ProPolyne
delivers consistent, and consistently better, results.

3.3.1 Adapting ProPolyne for Immersidata

While ProPolyne is a good stepping stone, to make it
a general and practical tool for supporting arbitrary
queries on immersidata, it must be extended in three
ways: generalization of the technique, re�nement of
the technique, and generalization of the applicability.

First, we intend to generalize the mechanism un-
derlying ProPolyne by looking beyond pure wavelets
to �nd another basis which may be more e�ective on
a particular dataset or for a particular query work-
load. Not only do query evaluation algorithms need
to be developed in this setting, but there is also a
need for best-basis (or at least good-basis) algorithms
that e�ciently select an appropriate basis from a li-
brary of possibilities. As a �rst step in this direction
we propose to develop a hybrid version of ProPolyne
which uses the standard basis in a subset of the dimen-
sions (the standard dimensions) and uses wavelets in
all other dimensions. Given this decomposition of the
dimensions, relational selection and aggregation oper-
ators can be used in the standard dimensions to ac-
cumulate the results of ProPolyne queries in the other
dimensions. Clearly the best choice of hybridization
will perform at least as well as a pure relational al-
gorithm or pure ProPolyne. Our preliminary analysis
indicates that for many realistic datasets and query
patterns, hybridizations can perform dramatically bet-
ter. The challenge here is making the correct choice
of standard dimensions. We intend to develop one al-
gorithm which e�ciently identi�es good dimension de-
compositions as part of the database population pro-
cess, and a complementary algorithmwhich selects the
most appropriate available basis to use for evaluation
of a particular query. As discussed in Sec. 3.1, the ba-
sis library used by this hybrid algorithm is a subset of
the full wavelet packet basis library. Not only will the
techniques developed here be valuable in practice, our
understanding of this simpli�ed problem will provide
a foundation for future use of the full wavelet packet
transform (DWPT). This in turn would allow us to use
ProPolyne in coordination with our work on immersi-
data acquisition and storage (Secs. 3.1 and 3.2).

Second, we plan to re�ne ProPolyne in several ways.
Our experimental results suggest that some informa-
tion about query workloads can be used to dramati-
cally improve the performance of data approximation
version of ProPolyne. If this is the case, then the du-
ality of data and queries leads us to believe that some
limited amount of information about the energy distri-
bution of the data can be used to improve the perfor-
mance of query approximation version of ProPolyne.
We will investigate the e�cacy of techniques based on

this principle, and we want to develop algorithms that
exploit this additional information to provide more ac-
curate approximate results quickly without giving up
the speed or I/O e�ciency of ProPolyne as presented
above. ProPolyne can also be improved by the devel-
opment of dimension reduction techniques such as ran-
dom projections, improved query iteration algorithms,
and forecast error estimation. Also, one bene�t of us-
ing transforms from Harmonic Analysis is that a great
deal of work has already been done to produce re�ned
error estimates for transform-based approximations.
We propose to exploit this machinery to provide accu-
rate error estimates and con�dence intervals without
introducing signi�cant computational overhead.

Finally, we intend to generalize the applicability
of the principles underlying ProPolyne. While range
aggregate queries are useful, linear algebraic approx-
imation can be used for much more general types of
queries. We begin by studying OLAP queries that re-
quire the simultaneous evaluation of multiple related
range aggregates. These queries are very common and
include SQL group-by queries, drill-down queries, or
general MDX expressions. The key observation here
is that these queries act as linear maps where range
queries act as linear functionals. Thus, where we ap-
proximate a vector to estimate a range query result,
we must approximate a matrix to estimate a general
query result. We developed techniques to select bases
in which these matrices are very sparse, giving nat-
ural query evaluation algorithms with low computa-
tional complexity. In [23], we have developed query
evaluation algorithms which share I/O maximally and
retrieve the most important data �rst in order to pro-
vide fast approximate results. In this setting there
are several natural notions of what it should mean for
the error to be small: for some applications it is im-
portant to minimize the standard deviation (i.e., the
standard L2 norm) of the errors. For other applica-
tions it may be more important to ensure that any
large di�erences between results for related ranges are
captured early and accurately, making a Sobolev or
Besov norm a more appropriate error measure. We
formalized these requirements and developed progres-
sive algorithm which attempt to deliver the smallest
possible error for a given error measure throughout the
computation. The extension of this work will help us
to understand the mechanics of matrix approximation
for approximate query answering; at the same time it
will provide insight into appropriate error measures.
Relational Algebra operators also have matrix repre-
sentations, and once we have a thorough understand-
ing of how matrix approximation works in the sim-
pler setting described above, we will be prepared to
develop and analyze fundamentally novel exact, pro-
gressive, and approximate evaluation strategies for re-
lational algebra queries.



3.3.2 Related Work

Recently wavelets have emerged as a powerful tool for
approximate answering of aggregate [9, 34, 35, 18, 37]
and relational algebra [3] queries. Streaming al-
gorithms for approximate population of a wavelet
database are also available [10], making wavelet co-
e�cients a powerful approximate data storage format.
Most of the wavelet query evaluation work has focused
on using wavelets to compress the underlying data, re-
ducing the size of the problem. A notable exception
is [9] which proposes a method to approximate the
function that maps ranges to the corresponding range-
sum, simultaneously approximating all SUM queries
for a given measure. This method is the closest in
spirit to the techniques we present; besides support-
ing a di�erent class of queries, our technique di�ers by
approximating individual queries at the time of sub-
mission, rather than approximating all queries at the
time of database population.

3.4 On-Line Query and Analysis

The second mode of query and analysis, online mode,
strives to support queries and analysis on sensor data
streams as they become available. This mode of opera-
tion is useful for online recognition of user behavior by
matching the behavior to a library of known behaviors
(e.g., American Sign Language).

Thus far, we have ignored the continuous data
stream (CDS) aspect of immersidata. We assumed
that the arrived data are processed o�-line and pre-
pared as multidimensional data set for future queries
and analysis. Instead, in the online mode, we must
recognize a speci�c behavior by real-time analysis of
immersidata as it becomes available, e.g., recognizing
an ASL sign from a user's hand motion. We view this
problem as real-time pattern isolation and recognition
over immersive sensor data streams.

In order to recognize a sequence of patterns over the
aggregation of several sensor data streams, one needs
to address two problems with interdependent solutions
(chicken-and-egg problem). To illustrate, suppose as
a result of an immersive interaction a sequence of p1,
p2, ..., pm patterns have been generated. One prob-
lem is to isolate each pattern within the sequence, i.e.,
identify when (say) p1 ends and p2 starts. The other
problem is to actually recognize p1 as a known pat-
tern. The interdependency is that in order to isolate
p1, it should be recognized as a known pattern. How-
ever, p1 must �rst be isolated in order to be compared
with a known set of patterns (termed vocabulary) to
be recognized!

We �rst focused on isolated patterns and studied a
similarity measure, weighted-sum Singular Value De-
composition (SVD), to compare an input pattern to
the members of a known vocabulary. Our weighted-
sum SVD addresses several challenges collectively.
First, it works directly on an aggregation of several

sensor streams (represented as a matrix). Second, it
performs dimension reduction due to its capability to
linearly transform a given dataset into rotations with
optimal set of magnitudes. Finally, it functions as a
similarity measure by comparing corresponding eigen-
vectors weighted by their respective eigenvalues.

To address the isolation problem, we periodically
compared sensor streams with each member of the
vocabulary using the weighted-SVD measure. Sub-
sequently, we maintained the accumulated similarity
values. Finally, we developed a heuristic, which in
real-time investigates the accumulated values and si-
multaneously recognizes and isolates the input pat-
terns. The intuition comes from the information the-
ory where the continuously arriving data in a stream
forms a process of accumulation in information about
the pattern sequence that is currently present in the
stream. On the other hand, the stream carries nega-
tive information about all the other absent patterns.

3.4.1 Porting Online Pattern Recognition on

Top of ProPolyne

We need to expand on these initial studies in several
ways. First and foremost, we need to conduct more
experiments within our di�erent application domains
and utilizing alternative sensor combinations to ensure
our preliminary observations hold true in the general
case. Second, our techniques work directly on raw sen-
sor data and not the wavelets. However, we are opti-
mistic that our techniques can be re-structured into
polynomials that are ProPolyne friendly. We have
been encouraged by a study by Shao [33], which points
out that all second order statistical aggregation func-
tions (including hypothesis testing, principle compo-
nent analysis or SVD, and ANOVA) can be derived
from SUM queries of second order polynomials in the
measure attributes. Higher order statistics can simi-
larly be reduced to sums of higher order polynomials.
The power of these observations leads us to believe
that ProPolyne's class of polynomial range-sum aggre-
gates can be used directly to compute our SVD-based
similarity function on wavelets. Moreover, our pattern
isolation heuristic that only depends on the SVD re-
sults, is independent from the sensor data set itself.
Third, we would like to explore techniques for com-
puting SVD incrementally, i.e., computation of SVD
utilizing results that have already been computed in
the earlier steps thus reducing the overall computation
cost considerably. Finally, we intend to evaluate the
e�ectiveness of other similarity metrics beyond SVD.
We believe that our information-theory based heuristic
can be evolved into a metric to measure the e�ective-
ness of di�erent similarity measures.

3.4.2 Related Work

Query over Continuous Data Streams (CDS) has been
stimulating increasing interests in the database com-



munity lately. Most current research e�orts are either
on Database Management System (DBMS) support,
such as Stream [2], Fjords [17], and NiagaraCQ [4],
or on query processing and data mining issues, such
as [8, 12, 13, 14].

Data sequences have been used in many applica-
tions, such as stock prices, biomedical measurements,
weather data, DNA sequences, and sensor data from
robotics. New emerging applications, such as data
mining and information retrieval by content, require
the capability of �nding similar patterns, i.e., similar-
ity query. Similarity query on persistent datasets has
received a lot of attentions ([1, 21, 11, 15, 16, 20]), how-
ever to the best of our knowledge, there are no prior
studies on pattern recognition/isolation over CDS.

Trivially, the performance of a similarity query is
determined largely by the chosen distance metric. The
most straightforward approach for measuring the sim-
ilarity between two sequences is to use a Minkowski
measure such as the Euclidean distance. Euclidean
distance metric is not suitable for our problem due to
the e�ect of \dimensionality curse" and the require-
ment of identical length for the two sequences under
investigation. Other approaches include DFT (discrete
Fourier transform) [1] and DWT (discrete wavelet
transform) [21], which are based on linear transfor-
mations and e�ectively treat a sequence with length
` as a point in `-D space, and rotate the axes. This
is exactly what singular value decomposition (SVD)
does, but SVD does this in an optimal way (in terms
of L2-norm) for the given dataset; the reason is that
e�ectively SVD maximizes the variance along the �rst
few rotations [16] thus gives the optimal decomposi-
tion of the dataset by way of rotations. Furthermore,
the nature of our data requires a 2-D transformation in
case of DFT or DWT; however, since our datasets are
not correlated on the sensor dimension at any given
time, we do not expect DFT or DWT to perform well.
These motivate us to use an SVD based approach.

At the time of this writing, we became aware of an-
other related paper [6]. The problem studied in [6] is
similar to ours in that both are trying to match the
pattern currently in the data stream to a known set of
time series (in our case, a set of prede�ned hand mo-
tions) and that patterns are of varying length. How-
ever, there are several di�erences between [6] and our
work. The dataset in [6] is one dimensional, while our
dataset is high-dimensional (28 D), which makes the
problemmore challenging due to the required tight ag-
gregation and the impact of the `dimensionality curse'.
Therefore, our choice of weighted SVD for similar-
ity measure is justi�ed and of course di�erent from
the choice of Euclidean distance in [6]. Moreover, we
deal with the real-time detection and separation of se-
quences, which has not been addressed in the past to
the best of our knowledge. In [6], computation is al-
ways performed up to the current time and then the

results are reported per each computation, in which
case some of the results may not be very meaningful.
Another novel aspect of our work is that we work on
aggregated sensor streams. Finally, our application
domain and datasets are unique.

4 Implementation Details

We have already started on the development of the
storage and o�-line query components of AIMS as an
integrated system. However, currently we only have
stand-alone codes for the acquisition and online query-
ing subsystems. Our plan is to integrate those two sub-
systems into AIMS to realize the architecture depicted
in Fig. 1.

Currently, AIMS has been developed as a 3-tier ar-
chitecture that provides exact, approximate and pro-
gressive range-aggregate query supports (e.g., average,
count, covariance) on multidimensional data sets. The
lowest tier is the NCR Teradata6 DBMS; the middle-
tier is ProPolyne modules implemented as web services
using the Microsoft .NET framework; and the top tier
consists of a couple of web-accessible GUI's written in
C#. Currently, the system is operational for querying
atmospheric multidimensional data sets provided to
us by NASA/JPL7 (see Figure 4). The data are trans-
formed to wavelets as they become available and get
packed as blocks. Currently, these blocks are stored
as BLOBs (using Teradata's BYTE data type) within
Teradata. However, we plan to store them as disk
blocks on raw disk and instead only store their loca-
tion IDs in Teradata.

As a long term plan, we intend to integrate the
ProPolyne modules into the server tier in order to
bring the code closer to data for optimization pur-
poses. To achieve this, we intend to work with NCR
to modify the query optimizer of the Teradata DBMS
so that given certain queries, it can invoke ProPolyne
operators to support progressive and/or approximate
evaluation of the queries. Trivially, the system must be
extended to allow the creation of ProPolyne data cubes
(similar to adding and dropping index structures) on
a given data set.

5 Conclusions

The contribution of this paper has been twofold. First,
it introduced a new application domain, immersive ap-
plications, and its data set, immersidata. It discussed
the database challenges involved in managing immer-
sidata and it explained how some of the techniques
proposed within more typical database research areas
(e.g., OLAP and multidimensional data mining) can

6We have alternative implementations using Informix OR-
DBMS. The choice of the database server for this speci�c pro-
totype was mainly due to the agreements with our sponsor.

7See a demonstration of this system at
http://infolab.usc.edu/NCRwebsite/.



a. Query screen with four dimensional gird cells b. Result screen as a pivot table

Figure 4: An implementation of approximate and progressive range-sum queries over atmospheric data

be utilized immediately to address some of the chal-
lenges in this new area. On the other hand, it discussed
why some of the current research contributions (e.g.,
in the area of data streams) do not immediately ap-
ply to the new problems and they need to go through
modi�cations and extensions.

Second, this paper proposed the design of an inno-
vative data systems architecture, AIMS, and provided
a detailed report on successes and mistakes relevant to
each of the AIMS subsystems. In addition, it provided
a brief survey of the research pertaining to each of the
subsystems. This paper makes a case that the sub-
systems are compatible enough that their integration
would result in a general-purpose system that would
address the common data management needs of a va-
riety of immersive applications.
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