
User Profile Management in Converged Networks
(Episode 11) :

"Share your data, Keep your secrets".

Arnaud Sahuguet Bogdan Alexe Irini Fundulaki Pierre-Yves Laligand
Abdullatif Shikfa Antoine Arnail

Bell Laboratories/Lucent Technologies
600 Mountain Avenue, Murray Hill, N J 07974, USA

{sa h uguet , fund ula ki}@research. bel I-la bs .corn
{ bogdan.alexe, pierre-yves.laligand, abdullatif.shikfa, antoine.arnail}@polytechnique.org*

1 Introduction
Two years ago [27], we described the problem of user
profile management for converged networks. These
networks are moving towards an all IP backbone
(wireline/wireless voice, wireline/wireless data, TV,
etc.) where new services can be built which inter-
act with users wherever they are. Back then, the
main concern of the industry was focused around
identity management with initiatives such as Mi-
crosoft Passport[24] and Liberty Alliance[l7]. The
challenge was to offer a simple way for users to au-
thenticate on all these networks.

Certainly not as a surprise to our community,
the focus of the industry has now turned to data
management issues. If being able to authenticate
users is crucial, it is even more important to manage
user information (e.g. access to bookmarks, phone-
books, calendar, etc.) in order to deliver rich and
personalized services.

XML has naturally been chosen as the data
model to describe and exchange user profile infor-
mation. Web services have naturally been picked
as the architecture used by these services to access

Work done during a summer internship at Bell Labs re-
search, as part of their last year of study at Ecole Polytech-
nique.
Permission to copy without fee all or part of this material is
gmnted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is b y permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endow-
ment.
Proceedings of the 2005 CIDR Conference

and manage this data. So far, nothing really new.

But an interesting twist has also emerged. Users
are certainly willing to share some of their personal
information as long as they remain in control of
what information will be accessed and for what pur-
pose. Users want to able to share selectively their
personal information, or, as mentioned in the title,
to share their data and keep their secrets.

The problem is not a pure data integration prob-
lem but a more complicated one where integration
and access control need to be deployed together, as
a privacy-conscious integration solution.

In this paper, we describe the current status of
the GUPster project initiated at Bell Labs two years
ago, show how the vision we sketched then [27] has
fleshed out and present some unanticipated and re-
maining challenges.

2 Summary of the previous episode
2.1 Problem statement

Numerous industry initiatives like Microsoft Pass-
port [24] or Liberty Alliance [17] have been started
to address the issue of user profile data manage-
ment. The work we present in this paper is moti-
vated by the 3GPP Generic User Profile (GUP) ef-
fort [13, a telecom-based initiative to aggregate user
profile information relevant to network operators.

In this context, we can summarize the problem
of privacy-conscious integration of user profile in-
formation as follows:

0 a user profile consists of profile components

200

e

0

e

0

0

0

2.2

that are distributed across networks, on various
data sources (relational, LDAP, XML, etc.).
The user profile can be logically seen as an
XML document made out of these components.
user profile components are described in terms
of an agreed upon XML schema (defined by
standard bodies such as SGPP, independently
of the schemas of the sources).
each data source exports XML data compatible
with the agreed upon schema.
distribution varies on a per user basis (e.g. a
user's calendar lives in Yahoo! and a different
user's calendar lives in MS Exchange inside her
corporate intranet) .
data consists of static (e g identity informa-
tion) and dynamic data (e g IM and wire-
less presence) and cannot be "warehoused" as
a whole'.
queries request sub-documents of the dis-
tributed used profile document and do not re-
quire joins, or restructuring.
access to data must comply with the access
control rules defined by the owner of the data
(this is the privacy shield).

Current approaches

In current architectures, when an end-user needs
to access her personal information, the application
acting on her behalf must contact independently a
possibly large number of data sources and aggregate
the information returned: a hard and also quite ex-
pensive task. Moreover, in order for the end-user
to share her data with others in a privacy conscious
way, she is forced to define all-or-nothing access con-
trol policies at the level of each data source. This
architecture is illustrated in Fig. 1.

Figure 1: Before GUPSter.

lThere are also some ownership problems with some net-
work operators refusing to share some information about
users - like location - with other entities.

2.3 Our approach

In this context, we envision an architecture that
will: (1) provide a single point of access to user
profile information, hiding the syntactic and proto-
col heterogeneities of the various sources and (2) be
responsible for enforcing fine-grained access control
on the user profile data, as illustrated in Fig. 2.

Figure 2: With GUPSter

The solution we advocate is embodied in the
GUPster system. It uses an XML mediator-based
architecture where: (a) the mediator's backbone is
an XML schema agreed upon by standard bodies 2;
(b) the user profile document is virtual with com-
ponents (specified by data mappings) exported from
distributed data sources; (c) access control rules are
defined in terms of the XML schema, and specify
who can access what part of the user profile docu-
ment3; and (d) user queries are simple projection
queries without joins or restructuring.

Ideally, we wanted (see [27]) a solution that
would combine both access control and distribution
within a single framework. In addition, our solu-
tion would (i) fetch only the necessary data from
the sources to answer a user query and (ii) pre-
serve the access control semantics, by sending to
sources queries that ask only for authorized data.
Such queries would be the result of (i) rewriting the
incoming user query with the access control rules
and (ii) rewriting this new query with the mappings,
obtaining a new set of queries to be sent to the
sources for evaluation.

The rest of this paper is organized as follows. We
first (Section $3) present the XSQuirrel language,
a new XML query language to describe and query
sub-documents. XSQuirrel is at the core of our

2e.g. 3GPP GUP [l] in the telecommunications domain

3By default no access is granted and the user must define
and Liberty Alliance [17].

positive rules to grant access to parts of the profile.

IntranetMobile PSTN

Application

Jabber / XMLMS Exchange
or WebDAV / XML

SS7 / ASN.1Parlay, LDAP, etc. HTTP / text or XML

GUPster

Internet/WebIntranetMobile PSTN

Application

Mediator

SOAP + XML ��� � � � � �

201

GUPster framework. We then (Section 54) show
how the language can be used to provide at the
same time both integration and access control. We
describe the architecture of the GUPSter prototype
in Section $5. We provide some details about the
system's security aspects in Section 56. Section 57
describes some remaining challenges. Some related
work is presented in Section $8, before we offer our
conclusions.

3 One language to rule them all
As mentioned in the previous section, the main chal-
lenge of GUPster is to address both data integration
and access control in an efficient way.

For GUPster, there are two key observations to
make:

First, in GUPster we need to express the following
three concepts:

a user query (Q), defining the requested por-
t ion of the user profile
a data mapping rule(Mi), that specifies the
portion of the user profile that resides in data
source i
an access control rule (ACRj), defining the
condition under which a portion of the user
profile can be accessed

Second, a portion of the user profile is nothing
more than a sub-document of the original document
that represents the user profile of a given user.

Based on these two observations, it becomes clear
that for both data integration and access control,
we need a language that can be used to describe a
sub-document of the user profile document.

Given a user profile D , the portion of the user
profile described by data source i is defined as a sub-
document Mi(D) , where Mi defines the mapping
for source i . D is defined as a disjoint union of
the Mi(D) . The authorized part of the document
is specified by ACR(UiMi(D)) where ACR is the
access control rule. The result of a user query Q is
obtained by evaluating Q on ACR(UiMi(D)) .

In a highly distributed setting, the naive query
processing (materialize the user profile, apply the
access control and then evaluate the query) can be
very inefficient when a) queries request an unau-
thorized portion of the profile document or b) the
queries request a small portion of the user profile
document.

We could do much better than the naive method
should we compute the authorized query (by com-

posing the user query with the access control rule)
and then filter this authorized query with the data
mapping rules. By doing this, we would send to the
sources a query for the data that is needed for the
query and that is visible by the requestor.

To achieve this form of rewriting, we need a
language that is compositional. In this paper, we
present such as language, XSQuirrel, that builds
on XPath 1.0 syntax, returns sub-documents of the
original document and is closed under composition.

3.1 The notion of sub-document

An XML document is a tree, defined by D =
(N , V, A, < d) where: (i) N is the set of nodes in the
document with n o a designated node which is the
document's root; (ii) V N x N is the par-
ent/child relationship between nodes; (iii) X is a
function that associates each node with a label; and
(iv) < d is an ordering relation on the nodes of the
document.

A sub-document D' = (N ' , V ' , A', <;) of an XML
document D = (N , V, A, < d) is defined as follows: (i)
D and D' have the same root; (ii) N' N ; (iii)
V'

E

V ; (iv) A' = X and (v) < ; = < d .

3.2 Syntax

XSQuirrel expressions are based on XPath 1.0 syn-
tax (enhanced with nested union supported by
XPath 2.0). They are built from a finite set of la-
bels (e g , tags, names) C of an XML schema S.
The fragment of the language that we consider in
this paper is syntactically defined as follows:

t o p := p u p

p := 1 I PIP I P/(P u PI I P[ql

where 1 is a name in E, U stands for union; '/'
stands for XPath concatenation but here is also
used as the XPath child axis. q in p[q] is called
a qualifier and is defined by: q := p I label = v.

For an in-depth description of the language we
we direct the reader to [6].
EXAMPLE We give below some examples of
XSQuirrel expressions.

41 : / A / B / (D U H)
qz : / A / B [H] / (D / D D U F)
43 :
44 :

/A/(B[CI u B[HI / (D/11 u F / F F))
/ A / B [D / E E] / (D / D D U H U F)

Query q1 for instance returns D and H nodes, that
are children of B nodes, themselves children of A

202

A

B B

C D

DD EE

F H D

FF GG DD EE II

nodes. Along with these nodes, their descendants,
and ancestors up to the root node of the document
on which q1 is evaluated are returned.

3.3 Semantics

Intuitively, the result of the evaluation of an
XSQuirrel expression q on a document D is doc-
ument q(D) (sub-document of 0) obtained as fol-
lows:
1. evaluate q using the usual XPath 2.04 semantics;
2 . for each node n obtained from the previous step,
get its descendant nodes, and its ancestor nodes up
to the root of D;
3 . finally, q(D) is constructed by removing all nodes
of D that are not in the set of nodes obtained from
the previous step (note that the resulting document
q(D) is a sub-document of D) .

The choice of taking the descendants is moti-
vated by access control needs. A natural choice is
that when a node is accessible, then all its descen-
dants are too. Returning the ancestors of a node
is helpful in the context of data integration, where
the identifier of a node (persistent object identifier
or semantic key) can be attached to it, allowing one
to merge the data obtained by different sources.

EXAMPLE Consider the XML document D illus-
trated in Fig. 3 (ignore the grey marking for now)
and query q1 given in Example. 3.2. The result of
evaluating q1 over D is sub-document q1 (D) where
the nodes have been marked in grey. More specifi-
cally, this document is defined by the D and H nodes
returned when evaluating q1 as an XPath expres-
sion on D , their descendants and ancestors up to
the root node of D. One can observe that although
there are no H nodes for the first (in document or-
der) node B, the latter’s node D is returned (with its
ancestors and descendants).

Figure 3: Original document D and q1 (D) (grey mark-
ing).

More formally: An XSQuirrel expression is al-
ways evaluated against the root node of a document

4XPath 1.0 considers only top level union while XSQuirrel
(as XPath 2.0) considers union at any level of the expression.

D. The result of evaluation XSQuirrel expression
q against a document D = (N , V, A, < d) is a sub-
document D’ = (N ‘ , V ‘ , A ’ , <&) of D such that: (i)
N’ is defined as:

N‘ = [[o]]q U n[[D]]u.::* U n[[D]]fi*::*
nE [[Dl14 nE[[Dll*

where n [[D]] p denotes the set of nodes returned by
evaluating XPath expression p on the node n of doc-
ument D (n is omitted when it is the root), & and
fi* are the XPath descendant and ancestor axis resp.
and (ii) V’ = { (n l , n2) E V I 121,722 E N ’ } .

3.4 The true value of a new language

Why a new language People may question the
need to define another query language for XML
when there are already so many.

XPath [lo] is not comparable to XSQuirrel since
XPath expressions (i) cannot be composed (once an
XPath expression is evaluated on a document D ,
the context is lost) and (ii) return sets of nodes
instead of documents.

Another solution would be to use XQuery [8] for
which a trivial composition algorithm [14] exists.
XQuery is an extremely rich and powerful language,
and the issue of how to optimize and efficiently com-
pose XQuery expressions may remain open forever.
Another issue is the fact that XQuery has no notion
of sub-document and enforcing the sub-document
semantics is not a totally trivial task, as explained
below.
Sub-document queries, the easy way: The first
advantage of the XSQuirrel language is that it per-
mits to define in a concise way sub-documents.

As an illustration, we present one possible
translation of a simple XSQuirrel expression into
XQuery.

/(a U bCpl1 U c/d) as XQuery -
for $x i i n /*
return

i f $xl[self : :a] then I $XI >
else i f Sxl [se l f : :bCpllI [n o t b e l f : :a)]
then C $xl >
else i f $xlCself::c[dll [no t (se l f : :a)] Cnot(se1f : : t
then C
f o r $x4 i n $xi/*
return
<c> if $x4[self::d] then { $x4 > e l s e (1 </c>

else 0
>

pl l)1

The reason for such complexity in the transla-
tion is that the output must respect the structure

i

203

of the original document. To enforce order, we need
to iterate over the children (using /*) and then pro-
ceed, on a case by case basis. Moreover, to avoid
children to appear more than once (e.g. when there
is a union of overlapping elements), we need to add
some predicates to make sure that each i f state-
ment corresponds to a unique case.
Sub-document queries the efficient way The
second advantage of our new language it that it per-
mits to handle sub-document queries efficiently. In
GUPster, from a logical point of view, we need to
handle documents as follows: from a document D ,
we need to keep the part that is accessible as de-
fined by some access control rules; then we need
to apply the query that will produce the answer.
This corresponds to Q ((U:T1"m ACRj)(D)) . But
as mentioned earlier, this implies that we mate-
rialize the accessible document before we apply
the query. Alternatively, we would like to be
able to perform the access control statically and
write (Q o (ULT1"m ACRj)) (D) . The difference
between both ways is illustrated in Fig. 5 and Fig. 4.

This means that at the level of the language
we need to define the composition (0) operator for
which V D , (Qi 0 Qz)(D) = Qi (Qz(D)).

For lack of space, we present the intuition for
the composition using an example. The details of
the composition algorithms for different fragments
of the language are available in [6].

We distinguish between the inner (Qi) and the
outer expression (QO). The idea behind the compo-
sition algorithm is to find embeddings of the outer
query Qo into the inner query Qi.

EXAMPLE Here is an example to illustrate the
intuition.

Qo
Qi
Qo 0 Qi /A/B[Hl[D/EEl/FIFF

/A/(B[CI u B[HI/(D/II u F / F F))
/A/B[D/EE]/(D/DD U H U F)

We see that node B[C] of Qo does not appear in
the composed query (the path /A/B/C for node
B[C] is not satisfied by the inner query). Node
B[H][D/EE] is created from nodes B[H] and B[D/EE]
of the outer and inner queries respectively. Node
D (and its children) disappears from the resulting
query since the outer query (QO) requests I1 nodes
but the inner query Qi returns only DD nodes. Fi-
nally, node FF requested by the outer query is added
below node F (the inner query returns the subtree
of F but the outer query requests only its FF sub-
nodes).

4 XSQuirrel in action
In this section, we will present an end-to-end ex-
ample that demonstrates how we can achieve ac-
cess control and integration using XSQuirrel. Some
design decisions about the language will hopefully
appear clearer.

Let us consider a scenario where user Irini (user-
name=f undulaki) tries to access some of Arnaud's
profile (username=sahuguet) information related
to his contacts. The query she issues is Q =
/Gup/Contacts. Arnaud has defined some access
control policies and some data mappings that are
stored in the GUPster metadata repository.

For this incoming query, GUPster retrieves from
the metadata repository the access control rules
that apply to the request concerning resource
/Gup/Contacts for user sahuguet and requestor
f undulaki.

Let us assume that the following access control
rules (R l , R2 and R3) are retrieved from the meta-
data repository. They respectively grant access to:
the contact entries that are of type public along
with the voicemail; the user identity; and the Jab-
ber presence information, but only during working
hours (gam to 6pm).

Relevant access control rules

R 1 : /Cup/(Contacts/EntryCQtype="public"1 1: VoiceMai
condition: true

R2: /Cup/Self/Identity
condition: true

R3: /Gup/Presence/JabberPresence
condition: 9am < time-of-day < 6pm

requestor=fundulaki

For each rule with a condition that evaluates to
t rue , GUPster then computes the union of the three
expressions:

Presence/JabberPresence
Self /Identity
VoiceMail)

CUPster then computes the acces-
sible view Qacc as Qo(RIUR2UR3):
/ Gup/ Cont a c t s /Ent r y [Qt ype=" pub1 i c "1 .

This is the end of the access control process with
the accessible view. We now move to the data inte-
gration process. GUPster retrieves from the meta-
data repository the relevant mappings for Arnaud's
profile. Let us assume that we have the following
mappings M1 and M6 for Arnaud's profile, involving
sources s l and s6.

204

Figure 4: Query processing with static access control

(d 1
Q

(a1 (bl (a

M6 /Gup/Cont act s/Ent ry [@t ype="pr ivat e"]
MI /Gup/(Self # Contacts/Entsy[@type="public"l)

a~-dbl . d o a m n t

Oata Is rstrleved
tmm mmote u)umes materlallzad document on access control rules ... to pmduce the final answer.
h s e d on mapplngs ...

... dnd merged Into d Document Is nltersd basad ... upon which query Q 1s applled

0 SOAP clients

Figure 5: Query processing with non-static access control

s6 /Gup/Contacts/Entry [@type="public"l [@type="private"l
s l /Cup/Contacts/Entry [@type="public"l [@type="public"l The relationships between the various compo-

The sub-documents retrieved from the various
sources are merged to produce the final result.
There are potentially many ways to merge docu-
ments. We currently merge documents based on
schema information. When two nodes coming from
two different sub-documents have the same path,
they are added as siblings in the final result if they
correspond to a list (or set) in the schema. Other-
wise, one of them is kept and the other one ignored.

5 Our implementation
GUPster is a fully working prototype that has been
demonstrated at [15, 21. It is written in Java, with
reuse of a number of open source components. All
the interactions between components follow the web
services paradigm.

5.1 GUPster architecture

There are basically three kinds of components in
the GUPster system:

GUPsbr wrwr ' Tonuat XI*

GUPster

service

GUPsPr madlJDrs

Mebdab

Backdoor
Provisioning

Client
source source source

Figure 6: The GUPster architecture

The core the system consists of the XSQuirrel
API that performs the query rewriting described
previously. For the web services aspect, we are us-
ing Apache Axis, on top of Apache Tomcat. The
GUPster web services is no more than a re-packaging
of the GUPSter core.

205

For metadata management, we are using the
dbXML5 native XML store. Support for XPath
and XUpdate[31] along with a friendly provisioning
interface makes it a perfect candidate. Moreover,
access to dbXML is done via the XML:DB API[30]
which means that the GUPSter server could also use
any XML:DB compliant native XML store.

For the SOAP clients, we are using a variety
of SOAP stacks, including Axis itself, kSOAP' ,
Mozilla SOAP, etc.

5.2 GUPster metadata

As mentioned earlier, in GUPster we handle two
kinds of metadata information: data mappings and
access control. The former associate portions of the
user profile document (expressed as XSQuirrel ex-
pressions with data sources). The latter specify the
authorized portions of the user profile document
(again in terms of XSQuirrel queries). Both data
mappings and access control rules are defined on a
per-user basis. All metadata information is stored
in our native XML database, on a per user basis. A
provisioning interface makes it possible to modify
this metadata information (see Fig. 6).

When a query comes in, the GUPster server sends
a request to the metadata store to retrieve access
control rules and mappings corresponding to a given
subscriber. We present some example of metadata
stored in the database in Figures 7 and 8.

Sources are simply described by the web service
that needs to be invoked (end point and SOAP ac-
tion). Note that sources do not necessarily support
XSQuirrel. In this case, the query will be trans-
lated to whatever the source supports (e.g. XQuery,
XSLT). For data mappings, some extra information
can be added (e.g. username and password to access
the remote data store).

For each user, an access control policy (set of ac-
cess control rules) is defined. A rule can have a list
of requestors (users or groups of users), a resource
(an XSQuirrel expression), the type of action (e.g.
read) and an optional condition. In our current im-
plementation, we support a very limited condition
language with boolean operators and variables such
as time of the day, day of the week. Note that,
because of GUPster processing flow (see below), re-
placing our condition language by something more
elaborate such as XACML[23] or Vortex[l6] would
be totally transparent for GUPster.

http: //nww .dbxml . corn/
6http: //ksoap. objectweb. org/

:pol ic ies>
<policy name="main-policy">

<rule ruleID="2">
<requestors>

</requestors>
<resource>

</resource>
<action type="read"/>

<requestor groupRef="coworkers"/>

/Gup/Contacts/Entry[Otype='public'l

</rule>
<rule ruleID="5">

<requestors>
<requestor groupRef="friends"/>
<requestor groupRef="family"/>

</requestors>
<resource>

</resource>
<action type= " read" / >
<condition>
9pm Olt; time-of-day Olt; 5pm
</condition>

/Cup/Presence/JabberPresence

</rule>

</policy>

: /pol ic ies>
. .

Figure 8: Access control policies

5.3 GUPster processing flow

For each incoming query from a client (i.e. a 3-
uple consisting of a requestor identity, a resource
defined as an XSQuirrel expression and the identity
of the owner of data), the GUPster server performs
the following actions:

1. it authenticates the requestor based on the re-
questor identity (see Section $6). If the authen-
tication fails, an empty answer is sent back.

2. it retrieves the access control rules that the
owner has defined for the requestor

3. it computes the accessible query by taking the
composition of the initial query with the union
of access control rules

4. it retrieves the data mappings for the owner
5. for each source, it computes the query to be

sent to the source, by taking the composition
of the accessible query and the mapping rule

6. for each source, it sends the SOAP request
to the remote source and gets back a sub-
document of the user profile

7. it merges the various sub-documents to pro-
duce the final answer

8. it sends back the final answer to the client
Note that in the case where the requestor has

asked an unauthorized query, , GUPster sends di-
rectly an empty answer without having to retrieve

206

<sources>
<source id="3" name="LocalSource-3"

<sourceCapability>
<service url="http: //. . . "

type="xsquirrel"/>
</source-capability)

</source>
. . .
</sources>

<dat aMappings >
<dataMapping id="2" sourceId="2">

<params><param name="id" value="fundulaki"/></params>
<resource>/Cup/(Interests # Locale # Contacts/Entry)</resource>

</data-mapping>
<dataMapping id="3" sourceId="3">

<params><param name="id" value="fundulaki"/></params>
<resource>/Gup/Money/BankAccounts/Bank[~name="CitiBank"~</resource>

. . .
</dataMappings>

Figure 7 : Source description and data mappings

any data from the remote sources.

5.4 Data sources we federate

We now list the various data sources we have
wrapped and that offer data access through our
GUPSter interface.

0 Jabber7 presence; access via a home-made Jab-
ber module that overrides the only buddies
can see each other's presence restriction; Jab-
ber XML converted into a GUPster compliant
XML.

0 voicemail; access to Lucent Audix voicemail
via JavaMail/POP interface; mail headers con-
verted into GUPster compliant XML.

0 Lucent directory information; access Lucent
corporate directory; generic translation from
LDAP to XML.

0 user location; access to Lucent miLife ISG
SDK8 simulating cell phone users moving
around, via Parlay interface; ad-hoc transla-
tion to GUPster compliant XML.

0 various synthetic XML data; stored in dbXML.
Microsoft MS Exchange data; access via web-
DAV; ad-hoc translation to GUPster compliant
XML.

0 Palm PIM data; access through JSyncMan-
agerg plug-in; ad-hoc translation from PIM
data (e.g. vCard, vCal) to GUPSter compliant
XML;

0 Sony Ericsson T610 phone data; access via
Bluetooth; ad-hoc translation from phone data
to GUPSter compliant XML.

5.5 GUPSter clients

Just like for data sources, we have implemented
various different applications living on various plat-
forms.

0 GUPSter browser client using Sarissa'O; SOAP

0 rich internet application built using Laszlo"

0 J2ME client application; SOAP support using

The first thing we learned from developing clients
running on devices with limited capabilities is that
XML support in J2ME usually requires some in-
decent amount of memory. For instance display-
ing the entire profile of a given subscriber raises an
OutOfMemoryException.

The second thing is that current J2ME imple-
mentation do not offer access to the internal "PIM"
datastores of the device (e.g. address book, calen-
dar, todo list for a PDA). This means that it is not
possible to export PIM data to the outside and that
the only thing we can do with whatever XML data
we retrieve from the network is to display it on the
screen (which is not particularly useful).

messages are hand-crafted.

(Flash client).

kSOAP12 and homemade serializer.

6 Security issues
One aspect that we have not discussed yet is the
issue of security. In the GUPster context, we want
to make sure that (1) data exchanged between the
various parties cannot be intercepted by malicious
attackers and (2) requestors are properly authenti-
cated, otherwise everyone could pretend to me in
order to access my full profile.

6.1 SSL certificates

Over the last two years, various solutions have been
proposed to address the issues of network iden-
tity and single sign-on. For GUPSter, we have
taken a rather conservative approach by using SSL
certificates[26]. Every time you access a web site
using a secure (i.e. https) connection, your web
client authenticates the server by checking that its

7http: //www. jabber. org
ahttp: / /www. lucent. com/developer/milife/
'http: //www. j syncmanager. org/

'Ohttp://sarissa. sourceforge .net/
''http://vuu.laszlosystems. corn/
12http://ksoap. objectweb. org/

207

Figure 9: Some GUPster clients: Flash-based (left); J2ME-based (right) running on Tungsten C.

certificate has been signed by a trusted certification
authority (CA). This is server-side authentication.
Conversely, the server can authenticate the client
by first asking the client to send a certificate as well
and by checking that the certificate has been signed
by a trusted CA. This is client-side authentication.

Client-side certificates are not as widely used as
their server-side counterparts. The main reason is
that the management (issuance, distribution, re-
vocation) of millions of certificates is complicated.
Moreover certificates usually need to be purchased.

Opponents often put forward the following con-
cerns about certificates:

0 they are complicated to issue
e they are complicated to use
e they cannot be remembered and are hard to

0 they require expensive computing power (pub-

In the rest of this section we will show how we
have addressed these issues, especially how clients
authenticate to the GUPster server.

manage (especially on devices)

lic key cryptography is CPU expensive)

6.2 GUPSter with SSL

To secure GUPSter using SSL certificates, we assume
that the various entities involved (clients, server and
data sources) have received some valid certificates
from a pool of trusted CAS for which the public
keys are known to each entity (e.g. built-in in the
client). End users are identified by the same unique
name present inside the certificate.

When the server receives a request from a client,

the authentication proceeds as follows:
1. the client opens a secure connection to the

server (Tomcat)
2. the server retrieves from the connection the

client certificate
3. the server checks that the certificate is valid

(signed by a trusted CA, not expired, not re-
voked); if the certificate is not valid, the request
is rejected.

4. the server forwards the request to the web ser-
vice handler (Axis in our case)

5. Axis adds to the request context some informa-
tion about the certificate before it dispatches
the query to GUPSter web service.

6. the web service extracts the identity from the
certificate and compares it with the identity
mentioned in the query; if they match, the
query is processed

To make this work, we have created a special
SOAPCert i f icat eHandler for Axis that enriches
the SOAP Messagecontext with some information
from the certificate and registered it in the process-
ing flow of our GUPster web service. See [28] for
more details.

6.3 SSL and devices

When moving to devices (i.e. J2ME as opposed to
J2SE), numerous problems occur.

The first one is that J2ME does not offer an
implementation of the SSL protocol with support
for both client and server certificates. Fortunately,
there exists a Java package (iSaSiLk-ME13) that of-

13google: iSaSiLk

208

���������	
��	�
�	
����

��	�
������	���������������	
��	�
������
�������	����

�����

���
��
���������	
��	�
������
�������	����

���������	
��	�
������
�������	����

� !"#$%"$%&$%� !"#$%'$()*#+%" ,-./,-./
0��1���������	���������
���
���������� �
����

��	���
�2�
����
���� �
����
fers a pure Java implementation of the SSL protocol
(client and server). Because it is written in Java, it
is kind of slow. Hopefully future version of J2ME
will offer a native support (i.e. SSL support in the
JVM itself).

The second one is that J2ME does not permit to
manage certificates. To overcome this restriction,
we propose two solutions. Our GUPSter client for
J2ME is deployed as part of a MIDlet suite (a bun-
dle of multiple J2ME MIDlets). The user can install
her MIDlet suite with her certificate already stored
in the suite. Or she can install one MIDlet that
securely connects to a server where the certificate
is securely stored. In both cases, after this initial
step, the user has on her device her certificate ready
to be used.

When tried on real devices, the overhead of run-
ning SSL is substantial (a few seconds), but in line
with the latency expected on wireless networks.

7 Remaining Challenges
We present in this section some challenges we have
faced so far (some of which were already mentioned
in [27]).

7.1 GUPster and open standards

One key aspect of the effort presented in this paper
is that it is motivated by an urgent need from the
telecom industry. As a result, any solution proposed
must be agreed upon by all the parties involved.
This usually translates into reliance on open stan-
dards. This sometimes dictates technical decisions.

Architecture For GUPster, we have had the
chance to start from a situation where there was no
de-facto standard. Today on the IT side, Liberty
Alliance 1171 has emerged as the standard for net-
work authentication and user profile management
in the context of web services. On the telecom side,
3GPP GUP [l] is trying to achieve the same by
reusing as much from Liberty Alliance as possible
(same interfaces, same signatures, etc.).

Serendipitously, our GUPSter architecture maps
naturally to the functional architecture of Liberty
Alliance. The GUPSter server naturally plays the
role of a Discovery Service [21] and Data Service
[20]. The GUPster wrappers are Data Service them-
selves. Alignment with the specification will simply
consist in reusing the exact same web service inter-
faces.

XSQuirrel At the core of GUPSter is this new

Figure 10: GUPSter and Liberty Alliance

XSQuirrel language. Even though we have a strong
motivation for its existence (see Section 53.4), peo-
ple often don't like it because it is not (yet) stan-
dardized. Our answer is two-fold. From a syntac-
tic point of view (see Section §3.2), XSQuirrel is
a subset of XPath 1.0 extended with union at ar-
bitrary levels. From a semantic point of view see
Section 53.3), we have presented a clear semantics
based on XPath 1.0.

People often complain that with our new lan-
guage, already existing tools cannot be used and
new ones need to be developed. To answer this
criticism, we have written translators from XSQuir-
re1 to XQuery and XSL-T. For lack of space, we
cannot present the full details of the translation.
The challenge in the translation is to preserve the
sub-document semantics. Using these translators,
XSQuirrel can be evaluated using one's favorite
XML tools.

Schema Clearly, an agreement needs to be
reached about the exact schema that will be used
to represent user profiles. But whatever the schema
looks like, it will have no major influence on our
work. Some schema constructs might be friendlier
to the static aspect of access control though. For
instance, structural information such as private vs
public contact entry can be encoded in the schema
itself (e.g. <publicEntry> vs <privateEntry> or
in the data (e.g. Qtype="publ i c") .

Another area where standardization will play an
important role is the language used to describe con-
ditions in our access control rules. In our current
prototype, this language is very limited. But users
may want to express more elaborate conditions us-
ing languages such as P3P14 or XACML [23].

209

7.2 Support of updates

Another big challenge is the support for updates.
Updates have been a major headache for industry
and academia. As of this writing there is no stan-
dard for XML updates.

In the context of GUPster, updates are even trick-
ier when we bring access control to the picture,
mostly because there are so many ways to under-
stand them. Allowing me to update a node in a
document, what does it mean exactly? Can I delete
the node, can I delete any of its descendants, etc.
Unlike queries that leave the document unchanged,
updates may radically modify the content. Updates
need to take into account the context of the update
(which node or set of nodes), the nature of the up-
date (delete, replace, append, etc.) and the nature
of the data actually used for the update (e.g. re-
striction on what can be appended). There is also a
thin line between access control and validity check-
ing.

7.3 Performance

A big challenge that we have not yet tackled is per-
formance. In our telecom context, network opera-
tors are willing to migrate to a solution & la GUPster
if their already existing services are not disrupted.
They want to the benefits without the overhead.

With GUPster, we already see today some major
benefits. As mentioned previously, because access
control is done statically, we don't need to access
any data when we know that this data is not visible
to the requestor.

We need to make sure that our rewriting algo-
rithms are really fast. There is a trade-off between
the flavor of XSQuirrel we propose and the com-
plexity of the algorithm (e.g. support for negation,
support for descendant axis, etc.).

We also need to make sure that the evaluator we
use for XSQuirrel expressions, either at the server
or at the data source, either native or via transla-
tion, is really efficient in terms of fast execution, low
memory requirement, etc.

Finally, in order to measure performance, we
probably need a benchmark suite (data and meta-
data) that is representative of the application do-
main we are dealing with.

7.4 Provisioning

Database research usually assumes that the data is
already in the database. In real life, this is not the

case. Users often painfully need to enter the data
by hand (e.g. calendar entry on a PDA, number
in a phone book) and then later on modify it. In
our context, provisioning is absolutely critical if we
hope to see users share their information with oth-
ers. It takes two flavors: provisioning of data and
of metadata.

For metadata, provisioning will require some ad-
hoc targeted interfaces and process flow. For in-
stance, access control requires to be able to navi-
gate the user profile schema, select some parts of it,
add conditions and predicates. We can also imagine
tools to check rules for consistencies.

For data, the provisioning should be simpler, but
on a much larger scale since the schema represent-
ing the user profile can be grown at will. In this
case, the provisioning should be automated. For
instance web interfaces (e.g. forms) could be gen-
erated automatically based on schema and schema
annotations.

8 Related work
In this paper we have presented the GUPSter frame-
work for privacy conscious integration of user profile
data. At the core is the XSQuirrel language, a sim-
ple XPath-based query language for XML data that
is composable and returns documents. The idea of
retrieving the subtree of a returned node for a given
query appeared in the context of distribution and
replication of XML documents in [3]: the fact that
a subtree of a node should be returned has to be ex-
plicitly defined in the XPath expression and is not
inherent in the semantics of the language as in our
case.

Authors in [25] follow a similar approach to [3]
where XPath expressions return documents instead
of sets of nodes. However, the authors neither define
formally the semantics of the language, nor discuss
algorithmic issues for operators such as composition
and union.

A strength of XSQuirrel is that it offers a unified
framework for addressing the issue of both access
control and data integration for XML data; in this
sense, it is (to the best of our knowledge) unique.
The work on Hippocratic databases [4] addresses
also both aspects but in a relational and centralized
context, where access control rules are not defined
by end users, just approved from a set of policies
defined by the database administrator.

We give an overview of how it compares to ap-
proaches relevant to the two topics considered indi-

210

vidually.

In GUPste', we use local-
as-view [18] mappings to specify the data exported
by each source. LAV-based query rewriting is a
hard problem. In our approach we advocate a sit-
uation in which distinct data sources contain dis-
joint data. Based on that, the user profile docu-
ment is computed by performing disjoint union of
the sources data. Having these simple data inte-
gration views, LAV query rewriting boils down to
query composition. In general, LAV descriptions
(see [19, 181 for a survey) allow greater modularity
in their descriptions, but introduce new complex-
ities - e.g. mappings specifications may be non-
deterministic or inconsistent, query rewriting is not
thoroughly understood, even in the relational case.
In the XML context, mappings have been used to
describe an XML source to XML [ll] or entity re-
lationship schemata [5]. Finally in [32] the authors
discuss mappings from and to generic nested struc-
tures. In contrast, our work looks at simpler map-
pings, for which more efficient algorithms can be
obtained.

Data Integration

Access Control A significant amount of work
has been done on access control for XML data over
the last few years. In most approaches [7,12,22,13]
and standards [23, 291, the access control rules are
specified as XPath [lo] expressions. In [23, 291 ac-
cess control is enforced by an all-or-nothing proce-
dure where the query is rejected if the result con-
tains non-accessible nodes. On the other hand,
in [7, 121 access control is enforced by a tree labeling
algorithm that computes the authorized view of the
XML document. In [9] a different approach is un-
dertaken. Schema nodes specify the conditions un-
der which security annotations exist in data nodes.
They also give an algorithm to compute the rewrit-
ings of twig queries (XPath without union and wild-
cards) using the DTD schema information. Gener-
ally, the above approaches use different languages
for the access control rules than for the queries or
algorithms that evaluate them, unlike in XSQuirrel.

[22] uses static analysis of queries and access con-
trol rules to check whether a query is safe (i.e.,
requests only accessible data). Queries and ac-
cess control rules are translated into string au-
tomata and their intersection is performed to de-
cide whether the query is safe. In their approach,
the result of performing access control is either yes
or no (all or nothing).

The work presented in [13] is closely related to
ours: access control rules are expressed in XPath
but enforcement of access control is done by means

of a security view.

9 Conclusion and Future Work
In this paper we have presented GUPSte', a unified
framework for data integration and access control
over distributed XML data. The core of GUPste' is
based on the XSQuirrel language, a new XML lan-
guage for sub-document queries. The fact that the
language is closed under composition, allows one to
perform most of the query processing statically and
minimize the data that is shipped from the sources
to compute the result of a query. These ideas have
been implemented in the GUPste' prototype that we
have also described.

As for some future work, the f i s t aspect is to
convince users to provide their data and share it via
GUPSter. This implies performance and scalability.
This also involves working with on-going standards.
The second aspect is our XSQuirrel language itself
that seems to be useful beyond the scope of GUPste',
as a general purpose language to define XML views
and reason about distributed XML processing.

We would like to thank
Guillaume Giraud, Nicola Onose and Nicolas Pom-
bourcq who contributed to the first version of the
GUPSter prototype that was demonstrated at the
SIGMOD 2004 conference.

Acknowledgment:

References
[l] The Third Generation Partnership Project

(3GPP). http://uww.Bgpp.org.

[2] S. Abiteboul, B. Alexe, 0. Benjelloun, B. Cautis,
I. Fundulaki, T. Milo, and A. Sahuguet. An Elec-
tronic Patient Record "on Steroids" : Distributed,
Peer-to-Peer, Secure and Privacy-conscious. In
VLDB, 2004. (Demo).

[3] S. Abiteboul, A. Bonifati, G. Cobena,
I. Manolescu, and T. Milo. Dynamic XML
Documents with Distribution and Replication. In
SIGMOD, 2003.

[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Hippocratic databases. In VLDB, 2002.

[5] B. Amann, C. Beeri, I. Fundulaki, and M. Scholl.
Querying XML sources using an Ontology-based
Mediator. In CoopIS, 2002.

[6] M. Benedikt and I. Fundulaki. Specification and
composition of xml subtree queries. Internal Re-
port, Bell Labs, June 2004. Available upon request.

[7] E. Bertino and E. Ferrari. Secure and Selec-
tive Dissemination of XML Documents. TISSEC,
5(3):290-331, 2002.

211

[8] D. Chamberlin, D. Florescu, J. Robie, J. Simeon,
and L. Stefanescu. XQuery: A Query Language for
XML. http://www.w3.org/TR/xquery, February
2001.

[9] S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and
D. S. tava. Optimizing the Secure Evaluation of
Twig Queries. In VLDB, 2002.

[lo] J. Clark and S. D. (eds.). XML Path Language
(XPath) Version 1.0, 1999. http: //www. w3c. org/
TR/xpat h.

[ll] S. Cluet, P. Veltri, and D. Vodislav. Views in a
Large Scale XML Repository. In VLDB, 2001.

[12] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. A Fine-Grained Access Control
System for XML Documents. TISSEC, 5(2):169-
202, 2002.

[13] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure
XML Querying with Security Views. In SIGMOD,
2004.

[14] M. Fernandez, Y. Kadiyska, D. Suciu, A. Mor-
ishima, and W.-C. Tan. SilkFbute: A framework
for publishing relational data in XML . TODS,

[15] I. Fundulaki and A. Sahuguet. Share your data,
keep your secrets. In SIGMOD (Demo), 2004.

[16] R. Hull, B. Kumar, D. Lieuwen, P. F. Patel-
Schneider, A. Sahuguet, S. Varadarajan, and
A. Vyas. Enabling context-aware and privacy-
conscious user data sharing. In Mobile Data Man-
agement (MDM), 2004.

[17] Liberty Alliance Project. http://www.
projectliberty.org.

[18] M. Lenzerini. Data Integration : A Theoretical
Perspective. In PODS, 2002.

[19] A. Levy. Answering queries using views: a survey.
VLDB Journal, 2001.

[20] Liberty Alliance ID-WSF Data Ser-
vices Template Specification, Version 1.0.
http://www.projectl iberty.org/specs/
l iberty- idwsf-dst-vl .O.pdf, 2002.

[21] Liberty Alliance ID-WSF Discov-
ery Service Specification, Version 1.1.
http ://wuw.project l iberty .org/specs/
l iberty- idwsf-d isco-svc-v l . 1 . pdf, 2002.

[22] M. Murata, A. Tozawa, and M. Kudo. XML Access
Control using Static Analysis. In CCS, 2003.

[23] OASIS. XACML, Feb 2003. http:
//www.oasis-open.org/codttees/tc-home.
php?wg-abbrev=xacml.

27(4) :438-493, 2002.

[24] Microsoft Passport. http: / /www. passport .net.

[25] M. Petropoulos, A. Deutch, and Y. Papakonstanti-
nou. Query Set Specification Language (QSSL). In
Informal Ps-oc. WEBDB, 2003.

[26] E. Rescorla. SSL and TLS Designing and Building
Secure Systems. Addison Wesley, 2003.

[27] A. Sahuguet, R. Hull, D. Lieuwen, and M. Xiong.
Enter Once, Share Everywhere : User Profile Man-
agement in Converged Networks. In First Bien-
nial Conf. on Innovative Data Systems Research,
Asilomar,California, USA, January 2003. Online
Proceedings.

Identity Management in Converged
Networks. Technical report, Ecole Polytechnique,
2004. Rapport de Stage d’Option.

[29] XML Access Control.
http://www. trl.ibm.com/projects/xml/xacl/.

[30] XMLdb API, Sept 2001. http: //www. xmldb. org/
xapi/index.html.

[31] XUpdate: XML Update Language, 2000. http:
//www.xmldb.org/xupdate/.

[32] C. Yu and L. Popa. Constraint-Based XML Query
Rewriting for Data Integration. In SIGMOD, 2004.
To appear.

[28] A. Shikfa.

212

	Print

