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Abstract

Pervasive computing applications monitor
physical-world phenomena and integrate data
acquisition, communication and actions across
small, heterogeneous devices (e.g., smart
sensors, network cameras and handheld devices).
To ease the development of these applications,
we propose to perform their tasks by executing
action-embedded queries, which are continuous
gueries with operations towards devices. We
extend SQL to allow applications to specify
actions and action-embedded queries. We treat
actions as first-class citizens (operators) in guer
execution plans, and investigate adaptive, cost-
based optimization techniques for a single query
as well as for multiple queries. We evaluate our
prototype query processorAorta, using a
pervasive lab monitoring application. The initial
experimental results show that Aorta ensures
correct application semantics, improves query
response time and balances device workload.

1. Introduction

In pervasive (or ubiquitous) computing [26], vasou

computing applications are usually difficult to eéép
and optimize. In this paper, we study how to zgili
database-style query processing to facilitate the
development and optimization of pervasive computing
applications.

First, we propose to use SQL to develop pervasive
computing applications, since the declarative ratof
SQL queries eases application development and sllow
for performance optimization. Recent work incluglin
Cougar [3][4][27] and TinyDB [17] has pioneered sthi
approach by treating devices and sensor nodesrtasilvi
tables and data from these devices as relationqdésu
Furthermore, user-defined functions and stored
procedures are prevalent in pervasive computing
applications because actions on devices often tabe
programmed in a language other than SQL. Therefore
we extend SQL to specify continuous queries emhedde
with device actions, which we cakliction-embedded
queries Correspondingly, we call our action-oriented
query processohorta.

Next, we explore opportunities for optimization of
action-embedded queries in Aorta. This optimizati®
necessary because action-embedded queries argremce
with physical-world events (e.g., object movement),
which may be transient. Therefore, the respome tf
an action-embedded query determines if an event is
caught in time. Furthermore, there may be manycesv

kinds of networked computing devices are embedded Qyajlable for executing a single action and the

mobile in the physical world and interact with tiverld
seamlessly. For instance, a pervasive video dlaweé
application automatically operates a number of teigo
controllable cameras for security monitoring inuglding.
Involving data acquisition, communication, as wa#l
operations on physical devicesacfiong, pervasive
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performance can be optimized by selecting a sutabl
device. This device selection is appropriate foe t
application semantics in pervasive computing, wlieie
sufficient for one or a few available devices (apased

to all devices) of the same type to respond to erent.
For instance, it is sufficient for one camera ofes
cameras in a lab to take a photo of a locatiomtdrest
upon an event; it is unnecessary to have all &aila
cameras take photos of the location at one poititrie.

To select devices for actions, we adapt the tiausdi
cost-based query optimization [22] for actions.
Apparently, suitable cost metrics may vary from
application to application in pervasive computisgch as



response time, power consumption, and quality tibac
effect. As a first step, we define the cost metimibe the
response time, a relatively general one. To eséirttze
cost of an action, we define a set of atomic opanat

We have developed an action-enabled monitoring
application with our Aorta prototype system for the
pervasive lab in our department. The pervasivewab
established for accommodating cross-area research

with estimated costs and abstract the compositibn aactivities as well as undergraduate final year gutg on

actions in terms of atomic operations.

There are two unigue, intertwined challenges fat-co
based optimization of actions. First, the curngmysical
status of a device may affect the cost of an adtionhe
device. For instance, some actions (e.g., pahaititl
zoom) on a PTZ (pant/tilt/zoom) network camera ineol
the movement of the camera head.
starting head position of a camera affects the ofst

moving the head of the camera to a target locatiorpurposes.

Moreover, the execution of an action takes more tm a

busy camera than on a less busy one. In some, cGases

extremely busy camera may malfunction and failingsh
the execution of an assigned action. Second, &anac
may have side effects that change the physicalsti#dta
device.
After an action is executed on a camera, the heattign
of the camera may change, which in turn changesdbke
of the subsequent action execution on this device.

pervasive computing. It has rack-mounted PC ssrver
desktops with removable hard disks, and variouscdsv
such as sensors, cameras, phones, and PDAs. yracult
students and other personnel with access permigsion
enter the lab anytime using their university ID dsar
(smartcards). Due to the diversity and dynamicimabf

As a result, thihe lab, the action-enabled monitoring applicatisn

highly desirable for safety, security and managdmen
We use this application as an illuseati
example throughout the paper.

The remainder of this paper is organized as follows
We describe the overall Aorta system architecture i
Section 2. We briefly introduce our SQL extensfon
actions and action-embedded queries in Sectionir8.

Take the PTZ cameras as an example agaiSection 4, we present our optimization and exeoutio

techniques for action-embedded queries in detdih
Section 5, we evaluate these techniques using the
pervasive lab monitoring application. We discusated

Given these two challenges, adaptive query proegssi work in Section 6 and conclude our paper in Secfion
[15] is essential for action-embedded queries ivamve
computing, where the environment is dynamic anayfel 2 System Architecture
and failures of devices are common. Consequenty, ) )
interleave the optimization and the execution ofetion- ~ The Aorta system consists of three major layers, as
embedded query in an adaptive, cost-based manndfustrated in Figure 1.

Whenever an execution of a query is triggered,quary
processor examines the current physical statushef t
candidate devices, estimates the cost, and seherisest
device to execute the action. This adaptation m@cau
every execution of an action-embedded query sotkeat
cost estimation of the action is up-to-date andcibet of
the actual execution is optimized.

Optimization becomes more complex when multiple
action-embedded queries that have the same embed
action are running concurrently in the system. tHis
case, we can perform group optimization, in which
multiple action requests from different queries ar
grouped and assigned to available candidate deiricas
batch. We define aaction requests the request from a
query for the execution of an action with instateiih
input parameter values for the action. Furthermoost
estimation must be done dynamically in the procafss
group optimization due to the side effects of awio We
have developed two Simple but effective algorithfms Computing app”cation programmers to Specify action
group optimization of action-embedded queries imt&0  towards heterogeneous devices through simple,

There are many interesting systems issues in bgildi geclarative action-embedded queries.  This interfac
an action-oriented query processor for pervasivgjieviates the problem of programmers having todh&n
computing, most prominently, data communication andsarious programming APIs for specific types or mgds
device synchronization. In this paper, howeverfoeis  devices. We extend the SQL language to capturenact
on query processing in Aorta because this is th® co semantics and provide a library of system built-in
technology of a database approach to the develdpmepethods (actions) for accessing and operating dsvic
and optimization of pervasive computing applicasion (2) A uniform data communication layer across

heterogeneous devices. This layer ensures thadita

Application 1 Application 2 Application 3

PCs sensors cameras PDAs cell phones

Figure 1: Three-layer illustration of Aorta

(1) A declarative interface that allows pervasive
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system, not the individual applications, is resflaesfor  various types), the coordination among the multiple
monitoring and tuning the current network infrasttwe  devices involved in an action may be sophisticatédch

and the physical settings of the devices. Sinmtitathe makes the optimization of such actions more difficu
Ingress and Caching modules in TelegraphCQ [75 thiThe extension of Aorta for handling multi-devicdiaas
layer handles heterogeneous networking protocols ans one direction of our ongoing work.

provides a dynamic, logical view of the networked After an action is registered to the system, apfibns
devices for applications. This abstract view stgéelhe can then specify and register queries with theoacti
lower-level implementation issues, such as dat&mbedded. Figure 2 shows the syntax of the CREATE
transmission loss, action failure and resourcewmpsion ~ AQ command, which defines an action-embedded query
on devices to enables the applications to focuthemeal- and registers the query to the system.

world semantics of their tasks. CREATE AQ agq_name AS

(3) An action-oriented query processing engine for SELECT select list
queries involving actions. This engine is the cof@ur FROM device_table_list
framework. Given the specifications of action-einfdbed [WHERE where_condition]
queries received by the declarative interface amel t [GROUP BY groupby _list]
facilities provided by the communication layer, #rgine [HAVING having_condition]
is responsible for generating, optimizing and execu [START start_condition]
action-embedded query execution plans. It interadth [STOP stop_condition]
the communication layer to adapt to device capeciind [LIFETIME lifetime]
network loads. It also provides mechanisms to cedu [INVOCATION num_invocations]

device contention and to avoid malfunctioning desic _ _
In the remainder of this paper, we mainly preseet t  Figure 2: The CREATE AQ command in AortaSQL

top two layers in Figure 1. The specification of an action-embedded query in

] AortaSQL appears to be an ordinary continuous query
3. TheDeclarative Interface with a name and the optional START, STOP, LIFETIME
In this section, we describe the syntax and secsti and INVOCATION clauses. Considering that pervasive

the querv lanquage brovided bv the Aorta declagati computing applications_ are often time-related, we
inter?;ce.y WeggxtgendpS(\gl:_ to hgndle device actimmd IVdeS|gned a number of timer clauses. The START and

. STOP clauses specify when a query should startopr. s
call our query languagdortaSQL The three main . .
commands of AortaSQL are CREATE, DROP, andThe LIFETIME clause describes how long the querly wi

ALTER. They can be used for either actions (ACT)ON be kept in the %ystem. f built- iables
or action-embedded queries (AQ). Aorta provides a set of system built-in varia a

Actions in Aorta are system-provided or user-define Boqlebian tl'melr Jungmns. $Example$? of systemd bg'lt'
methods/functions that operate devices. For a-use ariables Include snow, onever, »lorever, an once

defined action, the user must pre-compile the afdbe | xamples of _system-provided_ Boolea_m t_imgr functions
action into a dynamically linked library, and useet include every(interval_length, time_unit), inTimedrval

command CREATE ACTION to register the action alonggl_skt]art—time_' eb?d_timg),_and afltTim_e(hour, anUteo;ﬁ)f
with an action profile to Aorta. An action profile an ese varables and timer functions can be usethen

. : : . WHERE clause as well as in the START and STOP
XML text file that describes the high-level semastof o
the action (more details will be discussed in Sec#). clauses. The default conditions of the START, STEOR

The following is an example of registering a usefirted LIF_E;:—'ME c_Iauzt_af? are $nogv, $never and $fprever.b dded
action, which directs a programmable cell phoneng. € main diiference between an action-embedde

CREATE ACTION ring(String phone_no) query and an ordinary continuous query is in the
AS “admin/lib/ring.dll” - select_list, where an action may appear. Whenther

query condition is satisfied, the action is exedwad the
Humber of times of the execution is determined Hogy t
optional INVOCATION clause. This clause specifies
how many times the embedded action is invoked
whenever the query condition is satisfied. Theadkf
value in the clause is one. Applications can lsetvialue

31 this clause to be an arbitrary number N or aesys
provided variable $all, which means that the actioth

be invoked up to N times or on all candidate device
whenever the query condition is satisfied. Sinkhe t
execution of an action is neither restricted topactfic

f device nor required on all candidate devices, this

PROFILE “admin/profiles/ring.xml”
An application can use the DROP command to drop a
action that it has registered before:

DROP ACTION action_name
Both the executable and profile of the action v
removed.

The semantics of actions in pervasive computing ar
widely diversified. As the first step in investtgsy
action-oriented query processing for pervasive aaing,
we currently consider onlgingle-device actionfactions
that involve a single device of some type). Ruulti-
device actiongactions that involve multiple devices o
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application semantics increases the reliabilityacfion 4. Action-Oriented Query Optimization
execution, saves system resources and creates gnd Execution

opportunities for query optimization.
Putting these language constructs together, Figure Based on the application semantics for action-emibed
shows an example query, night_surveillance, for theueries, in this section we present our actionnbei

pervasive lab monitoring application in AortaSQL. query processing techniques using a simple exa(spe
CREATE AQ night_surveillance AS Figure 4). This snapshot query is a simplificatafrthe
SELECT sendphoto(p.no, photo(c.ip, s.log, night_surveillance example in Figure 3. In spifeite
“pbetadmin”)) simplicity, this query is sufficient for illustratg the main
FROM sensor s, camera c, phone p design approach of our query optimizer and thetedla
WHERE s.accel x> 500 issues. This example is also used for performance
AND coverag_e(c.id, s.loc) evaluation in our experiments.
AND p.owner = “admin” CREATE AQ snapshot AS
START atTime (0, 0, 0) SELECT photo(c.ip, s.loc, “photos/admin”)
STOP atTime (6, 0, 0) FROM sensor s, camera c
WHERE s.accel_x > 500
Figure 3: The night_surveillance example in AorthSQ AND coverage(c.id, s.loc)

In this example, the actiqrhoto(camera_ip, location,
directory_name)perates the network camera with an IP
addresscamera_ipto move its head to the direction ) _
pointing tolocation and take a medium-size photo; and4-1 Query Plan Generation and Execution

then _stores the_ photo to the direct_cd'yectory_name We have implemented a preliminary query operator
Th.e file name will be dynamically a33|gned by thenera ~ framework in Aorta. Most of the query operatore ar
using the current system date and time. The actiopsational, e.g., selection, projection and joinegors,
sendphoto (phone_no, file_nanfest converts an image since data in Aorta are all in the form of relatibtuples
file namedfile_nameinto the format for phone display eyen though the attributes can be of less traditiolata
and then sends the converted image to the phorreawit types, such as images.

phone numbephone_no As illustrated in this example, " pitferent from a traditional query optimizer, Aorta
action nesting is supported in Aorta to enable demp makes actions operators in query execution plaAs.
interactions between devices. The constraiatcel X > 5ction operator contains the name, the input paes)e
500 in the query condition monitors the physical-world gnq the code block of the method to be executéguré

events of interest (e.g., someone pushes the dobiie s jjjystrates the query plan of the snapshot qireRigure
candidate cameras and phones are specified by the For simplicity, projections are omitted.

constraintcoverage(c.id, s.lo@ndp.owner = “admin”. : « -
Action-embedded queries are “backward-compatible” photo(c-p. s'k;; photos/admin’)

with ordinary continuous queries and snhapshot qaeri

This compatibility is intuitive, since data acqtisn is coverage(c.id, s.loc

essentially a trivial type of action. For instaniéehere is

no action in the select_list, a CREATE AQ command s.accel_x > 500y

creates a traditional continuous query. Furtheeniéithe

LIFETIME of an AQ is specified to be $once, this ALa sensor camera

snapshot query that executes only once duringfétinhe.
Finally, we give examples of the ALTER AQ and

DROP AQ commands, which modify and remove pre- The execution flow of this query plan is as follows

defined action-embedded queries, respectively.  Thgirst, the sensor virtual table is scanned aneréti to see

following command stops a query immediately: if there are sensors that detect an x-axis act&iereate
ALTER AQ aq_name SET STOP $now larger than 500. When a sensor tuple is pushead fhe

If the application that defined a query does nadhthe sensor scan operator, it is used to join (probe)ctimera

query any more, it can use the following command tosirtual table to find cameras whose view rangesecale

Figure 4: The snapshot query

Figure 5: Query plan of the snapshot query

remove it from the system: sensor’s location. Finally, the IP addresses afsé¢h
DROP AQ ag_name cameras and the location of the sensor are passtukt
action operator, which selects one suitable carntetake
the photo.

Similar to the sensor and the camera scan opetliators
this query plan, for each type of device involvediorta,
a scan operator is provided by the uniform
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communication layer for the query processor to s&tlee the atomic operations, (3) a grammar for specifytimg
corresponding virtual device table. The functioncomposition of the action, (4) the profile of thetian,
coverage() is provided by the Aorta system. Itekls and (5) the formulas for estimating the cost of dlegon.
applications from the change of the specific geplyiGal  All components are system-provided except forvidhich
location system adopted by Aorta. is provided by the application that registers tltdoa.
In this query plan, the smart sensors aretiggering  We describe these five components in order.
devices which keep on sampling real-time values of the Atomic Operations. For each type of device
accel_x attribute with a system-tuned sampling qaeri involved in Aorta, we define a set afomic operations
Due to the asynchronous nature of event occurreace, that the devices can execute. Examples of suahiato
push queue is required to connect the sensor gEator  operations include: “take a photo of a specifie ggmall,
to its upstream operator. In comparison, ttiggered medium or large)”, “turn the head by one degreeain
deviceson which the action is executed, i.e., the cameraspecific direction (up, down, left or right)”, afidoom in
in this query plan, need a traditional pull queoe the (or out) one level” for cameras; “receive a phaipog text
camera scan operator. We have implemented bo#stypmessage) of a specific size” for phones; “beep ‘band
of queues in our query processing framework. “blink once” for sensors; and “establish a conrmttifor
From this simple example we observe that, due @o thall types of devices. As the name suggests, tbmiat
event-driven nature, the execution flow of a siregféon-  operations are the basic, non-dividable units tbas.
embedded query plan in Aorta is usually quite fixed Estimated Costs of Atomic Operations. We use a
Consequently, there is little space for traditiomdn  number of homegrown testing programs to measure the
enumeration [22], since the positions of operaiarsa  estimated cost of each atomic operation for eapb tf
query plan cannot be switched. Furthermore, differ device by executing the operation repeatedly. Each
from traditional user-defined functions, it is gemly  estimated cost is the average of one hundred imdiene
unintuitive or impossible to push down an actioempor runs. These estimated costs of atomic operatioas a
in a query plan, because the action must know #heeg  stored as part of the device profiles and managethé
of all its input parameters before it can execute. uniform communication layer. Our tests show that a
Even though the reordering of operators in an aetio atomic operation has almost the same estimatedarost
embedded query plan is unlikely, we can optimizedevices of the same type.
individual actions for their efficient executionMore We currently measure the cost of an atomic oparatio
specifically, upon an event we can select the egice in terms ofresponse timehe time required to execute the
for an action operator, since there are usuallytiplal operation. The cost of an action execution on\acees
candidate devices for executing the action anddéfault  defined in the same way. Other cost metrics maynbee
application semantics is to execute the action omge. meaningful for some atomic operations, such as powe
This optimization of action operators is similar to consumption for sensor beeps and price for phoifis. ca
selection/projection/join method selection in ttemtial We choose response time because it is a general cos
query optimization. The major difference is that i metric and is suitable for a large number of atomic
pervasive computing we need to consider the phlysicaperations on various types of devices. In addljtivo
status of devices when optimizing actions. matter what cost metric is chosen in our model, the
In the following, we present the action-orientegigu  methodology for cost estimation is similar. Ivery easy
optimization and execution techniques we have desig to extend our cost model to adopt different costrice
and implemented in our Aorta query processor. Fofor different actions, or to use a weighted combaraof
simplicity, we say “a type of device” in short fta type  multiple cost metrics for an action.

or model of device”. As an example, for the AXIS 2130(R) PTZ network
cameras [2] we used, we have defined atomic opeisati

4.2 Cost Estimation Model for Actions and estimated their costs as listed in Table 1.
As we take a cost-based approach for the optinoizaif ~ Taple 1: Estimated costs of atomic operations f§tA
actions, an immediate problem is how to estimatecthst 2130(R) PTZ network cameras
of an action to be executed on a specific devit¥e _ i
believe that the optimizer should be able to seek Atomic Estimated Cost
optimization opportunities for an action in a gerevay Operation (miliseconds)
without knowing the implementation details of thatian, Pan (per degree) 13
no matter whether the action is system-providedsar- Tilt (per degree) 14
defined. Therefore, we propose a generic cost hfode Zoom (per level) 0.36
actions. Connection 110

The cost model for an action includes the following Take a Small-Size Photo 30
components: (1) a set of atomic operations onype of - -
device that this action involves, (2) the estimatedts of Take a Med|um-$|ze Photp 40

Take a Large-Size Photo 50
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Action Composition. Based on the atomic operations
on devices, we define the composition of an actisimg
the following grammar:
action := operationSequence
operationSequence := operationUnit(& operationUhit)
operationUnit := operationSequence | operationSet |

operation
operationSet := operationUnit (|| operationUnit)*
operation := atomicOperation (& atomicOperation)*

In the grammar, the symbol "&" stands for sequéntia
execution and "||" for parallel execution. An antiin
Aorta is anoperationSequencand anoperationSequence
is a number obperationUnis executed sequentially. An
operationUnitin turn can be amperationSequeng¢ean
operationSetpr an operation An operationSetconsists
of a number ofoperationUnis that are executed in
parallel.

Finally, an operation is defined as the sequential
execution of a number of identical atomic operationn
other words, aroperationis to execute the same atomic
operation multiple times sequentially. Our consadien
for the identical-atomic-operation constraint is rake
the composition of an operation as simple as plessibd
to leave more complex relationships among operation
the nesting obperationSequena@ndoperationSet

Action Profiles. Instead of inquiring about the low-
level implementation details, Aorta requires apgiiens
to provide the high-level semantics of an actioa &in
action profile. An action profile is an XML filehat
contains the following information about an actidf)
the name, input parameters, and involved devicéhef
action and (2) the composition of the action. THED
(Document Type Definition) of an action profilessnilar
to that specified in the grammar for the compositd an
action.

As an example, Figure 6 shows a fragment of th(%

action profile of the system-provided action phato{he
composition of the action is illustrated in Figute For
simplicity, operationUnit is omitted in Figures Bda7.

This action profile specifies the following inforiian
to the Aorta query optimizer:

(1) The action name iphoto and it is towards the
AXIS 2130(R) PTZ network cameras.

(2) The action has three input parameters, denaged
$camera_ip$location and$directory_namein order.

(3) The action consists of a sequence of operatiads
operationSets, which in turn consist ofonnect
takeMediumSizePhatand a set gpan tilt, zoomatomic
operations.

<actionProfile>
<name>photo </>
<params>
<1>$camera_ip</>
<2>$location</>
<3>$directory_name</>
</params>
<device>AXIS 2130(R) PTZ Network Camera</>
<operationSequence>
<operation>
<atomicOperation>connect</>
<number>1</>
</operation>
<operationSet>
<operation>
<atomicOperation>pan</>
<number>deltaPan($location)</>

Figure 6: Action profile of the photo() action

operationSequence

operation operationSet

operation operation

& &

connect operation operation operation connect takeMediumPhoto

& & &

pan tilt zoom

Figure 7: Composition of the photo() action

Cost Estimation Formulas for Actions. With the
our pieces of information (the set of atomic opierss,
heir estimated costs, the grammar for specifyiotioa
composition, and the action profile), the queryimjer
is ready to estimate the cost of an action executio a
candidate device using the following cost estinmatio
formulas ((1)-(4)):

Caction = Coperationﬁquence

(1)
N
Coperationﬁquence = ZCoperationLhit_i
)
N
Coperation&t = MAX(CoperationUnitii)
3)
Coperaton = CatomicOpeation * number (4)

The calculation of these formulas is straightforvar

(4) The pan, tilt, zoom operations are executed inThe estimated cost of an acti@., is equal to the

parallel.  The system-provided functions deltaPan()
deltaTilt() and deltaZzoom() (the latter two are sbbwn
in Figure 6) are used to compute the numbers of fign

estimated cost of the top level operation sequence
(Formula (1)). The estimated cost of an operation
sequenceCoperationsequencelS  €qual to the sum of the

zoom atomic operations needed on a candidate camegatimated costs of its operation units (Formula (&ince
based on the current head position of the camém, t we use response time as the cost metric, the dstincast

value of the $location input parameter of the actiand
the geographical location system that Aorta adopts.
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Finally, the estimated cost of an operatiGpheration iS
equal to the total cost of thmimberof atomic operations
it contains (Formula (4)). In Formula (4 awomicoperation
represents the estimated cost of an atomic oparatioca
type of device.

4.3 Cost-Based Optimization of a Single Query

Given the cost model for actions, we now describe h
our optimizer works for the optimization of singletion-
embedded queries.

We continue to use the snapshot query in Figure 4 a

the example. Suppose for an execution of this yquer
there are totally N candidate cameras for the actmd
the optimizer is about to select one from them. e Th
optimizer first connects to the candidate cameiras

parallel and examines the current physical status of théeltaPan(),

devices, e.g., the current head position (the pkrand
zoom values) for the cameras. A TIMEOUT valuedt s
to break connections to unresponsive devices. un o
current implementation, the TIMEOUT value is seb®

the connection process three times and an errcsagess
returned to the application.

If things go well and M out of the N cameras are
available to execute the action (i.e., their respsrto the
connection requests are received within the TIMEOUT
limit), then for each camera i of these M cameths,
optimizer computes its estimated c&itto execute the
action using the following formula:

C = MAX(R—PllChan, | Ti— Tni |Gk,

| Z-_ Zﬂ |Uczoorr) + 2 Ucconnection_i

+ CakeMediumSizePhoto (J—<i —<M)

Here P,;, T,, Z, are the current pan, tilt and zoom
values of candidate cameraRy, Ty, Z; are the target pan,
tilt and zoom values specific to camera i corresfirog to
the sensor’'s location, which are computed in the
deltaTilt() and deltazoom() functions,
correspondingly. Cpan, Cir and Cyeomare the estimated
costs of the pan, tilt, zoom atomic operationstiids type
of camera. The numbers of these atomic operations
needed on camera i ef®; — Py |, | Ty — Tg | and| Z; —

twice the estimated connection time for the type ofZi | respectively, which are the output of the delta

device. We will see in Section 5 that this valuerked
well in practice. When the optimizer has receitbd
responses from all of the cameras or the TIMEOWitli
is reached, this connection process ends.

functions. Cconneciion_iiS the connection cost of camera i
recorded by the optimizer in the initial connection
process. CikemediumsizerhothS the estimated cost of taking a
medium-size photo. The optimizer will select tlenera

From the composition of the photo() action (morewith the leasC;value to execute the action.

specifically, the involved atomic operations) sfiedi in
its profile, the optimizer knows that the cost opfzoto()
action on a camera is mainly affected by the curnead
position and the network connection delay of theiae
Note that for actions on different types of devjcdse

action cost may depend on different types of devicghat are currently free.

physical status. As other examples, the curramation of
a robot affects the cost of moving it to a targetation;
and the depth of a sensor node in a multi-hop eseel
network affects the cost of connecting the node.

We design the optimizer to poll the candidate devic
for their current physical status due to the dyraamd

In the formula, the reason we USgnnection_iinstead of
the estimated coS€C.onneciion Of the connection atomic
operation for this type of camera is that camerdb &
light workload are able to respond within the TIMBD
limit but their connection time will be longer th&nose
This is the way the ojgéen
estimates the current workload on candidate deviaes
heavily-loaded device is very likely to require mdime
to respond to a connection request. As simpl¢ lapks,
this method is effective in practice.

The case that the query requires N executions of an
action instead of only one can be optimized inrailar

unreliable nature of the device networks — physicaway. The optimizer sorts the candidate deviceshin

devices in pervasive computing may join, move agooin
leave the network in a way unpredictable by theesgs
Cell phones, for example, may be turned on/off iamgt

increasing order of the estimated cost for exeguthre
action and picks the top N ones of them.

and may become temporarily unavailable when moving-4 Grouping Multiple Action-Embedded Queries

into an area where no signals are received. Fumibre,
it is possible that some devices also run appbaatithat
are not built on top of Aorta, which makes it diffit for
our system to accurately keep track of and pretliet
current workload of the devices.

After getting sufficient information about the oent
physical status of the candidates, the optimizginseto
select one of them to execute the action. If afididates
seem to be unavailable (i.e., all connections aned
out), the optimizer will sleep for a while and thespeat
the connection process to seek more candidate etetdc
execute the action. The optimizer gives up afpeating
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Having considered selection of devices for an ettecu

of a single query, we proceed to consider group
optimization of multiple action-embedded queri€oup
optimization in Aorta mainly focuses on balancimagi@n
workload on devices to improve system performamae a
to prevent device overloading.

In Aorta, we make queries that have the same
embedded action (the functions are the same, butput
parameter values may be different) share a singiera
operator across their query execution plans. Haehy is
connected to the shared action operator by its pugh-
based output queue. We add the query ID to thpubut
tuples of the query before they are passed to hieed



action operator so that the operator knows whigiet
are from which query. Sharing an action operatoorg
multiple queries saves system resources and gives t
optimizer a global view of the current system wodd of
an action. Instead of being optimized separatetiiomt
any synchronization among them, multiple queriest th
have the same action are now grouped and optinasiged
whole in the optimizer.

Algorithm 1. Action Workload Assignment
Input: A set ofn action requestR = (r4, r5, ..., Iy) and a
set ofmdevicesD = (d, d,, ..., dy). Each request
ri O R has a set of candidate devieggd1D. (1<
i<n)
Output: An assignment dRto D (eachr; O Ris assigned
to a devicad (0 D;) with the workload on D is balanced.
1. For each devic inD (1<i<m)
Initialize its assigned worklo&u = 0;
j=1
. While there are unassigned requests {
For each requesthatj devices can service {
For each of theandidate devices for
Estimate tlwstC,, to service on
devicd,, computeE, =W + Cy;
Select deviakamong thg candidate devices
that has the le&svalue and assigntod;
LeC, be the estimated cost to serviaen d;,
} W +=Cy;

j++;

Noorwn

©

10
}

Figure 8: The algorithm for action workload assigmin

Algorithm 2: Prioritize and Service Multiple Action
Requestson a Single Device

Input: A set ofn action requestR, on a devicea.

1. WhileRyis non-empty {

2. Record the current physical stefysf d;

3 For each request] Ry

4, Estimate the coSt to service in §;;

5 Select the request with the least estimedst]

service it (execute the action), and remibfromRy;

}

Figure 9: The algorithm for prioritizing and sefivig
multiple action requests on a single device

The goal of the two algorithms is to minimize the
maximum completion time of the set R of action exig
(the interval between the time these requests appdhae
shared action operator and the time all of thenehzaen
serviced) on the group of available devices D. sThi
problem is similar to the classic makespan minitdzra
problem [5] in scheduling theory that deals withrelated
parallel machines with sequence-dependent job step
and machine eligibility restrictions. As the origin
problem is known to be NP-hard in general, we desig
and implement our own greedy algorithms.

Algorithm 1 assigns the action requests to the
available devices with a goal of balancing workload
among the devices. Note this algorithm is for esqu
assignment only; a request that is assigned tovaelés
gueued and is not serviced immediately. The hicifizr
assignment is the number of candidate devices cifi ea
action request. More specifically, the algorithtarts
with the request that has the least number of daieli
devices, and assigns the request to the candidateed
that will have the minimum estimated total worklo&d
this request is serviced on the device. It theesgon to
assign the request with the next least number rdidate
devices until it finishes the assignment of alluests to
devices. If two requests have the same number
candidate devices, the algorithm assigns the twoeasts
in a random order.

After Algorithm 1 assigns a group of requests et
of devices, for each device, Algorithm 2 prioriszand
services the requests that have been assignedeto
device. The heuristic in Algorithm 2 is to servittee
request that has the least estimated cost in thertu
physical status of the device. As the executionaof
action may change the physical status of a devloe,
physical status of the device is updated afterctalp
each request for the device to service.

The performance of these two algorithms is related
the system-defined grouping time interval T. The
optimizer groups requests that fall into one groggime
interval. If T is large, it is likely that many t&mn
requests can be grouped, but the processing delay f
individual requests may be large. In contrasf, i6 too
small, there may be very few action requests inheac
interval and the two algorithms are of little usi our
current implementation, we set T = 100 ms, which is
about the average processing delay in one execotitire

of

th

It is expected that Aorta, as a pervasive QUery,,nshot query in Figure 4 from the event beingaed

processor, will always have a large number of @seri
running concurrently. In this scenario, multipletian
requests from different queries may appear in aesha
action operator at the same time or within a shiare
interval. In order to improve device utilizationcaquery
response time, we design and implement two alguosth
to distribute multiple simultaneous action requegis
available devices and to service these requestanin
optimized order. These two algorithms are preskirie
Figure 8 and Figure 9.
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to the corresponding tuple(s) arriving at the inguetue of
the action operator.

In addition to enabling efficient group optimizatiér
actions, sharing an action operator also gives the
optimizer the opportunity of sharing the resultao$ingle
action execution among multiple requests from déffic
queries. Such action result sharing is very ingurfor
load shedding when the system is heavily loadeti wit
large number of queries and their action requegts.a
typical example, our optimizer can easily identify



simultaneous requests with identical instantiatedoa Table 2 shows the estimated cost and the realfaost
input parameter values and invoke only one actiorao executing the action on three cameras. The restlweas
device for all these requests. However, giverpileenise  recorded by disabling the cost estimation modulé¢him
that the system should ensure the correct apmitati optimizer and letting the optimizer randomly pickeo
semantics of the result of each action executiomose device for executing the action. All values in tlable
complex result sharing mechanism seems to highlyere the average of three independent runs.

depend on the specific semantics of an action. avée In Table 2 we see that our cost model is reasonably
currently investigating the feasibility and usefds of accurate. The error rate of the estimated codinte as
designing general techniques in this regard. the ratio of the difference to the real cost) wesuad 1-

2%. The order of the cameras by the estimatedwast
5. Experiments the same as that by the real cost. The differénce

absolute values between the estimated cost andetiie
In this section, we use the pervasive lab monitprin cost was small. The estimated cost was consigtézss
application to validate the effectiveness of ounpmsed  than the real cost because the transition cost deetw
cost model and optimization techniques for actioe  gperations in an action was omitted in the costehod
mainly present our experimental results for action- camera 3 had a long connection time due to some

embedded queries with the photo() action. We cliise mechanical problem.  We intentionally kept this
action because it is representative and its effebitghly  malfunctioning camera in the experiment to see héret
visible. the optimizer could successfully identify a malftioging

. device. Its estimated cost was unavailable bec#use
51 Experimental Setup connection requests to it from the optimizer weveags
Our Aorta query processor was implemented using.Javtimed out. Its real cost was unavailable becatakviays
The experiments involved one Pentium 1l PC, fowisA failed to execute the action. This indicates tbat
2130(R) PTZ network cameras [2], and ten Berkeleyoptimizer could successfully distinguish devicest tere
MICA2 motes attached with MTS310CA sensor boarddhaving problems and avoided selecting them for atkeg
[10]. Two cameras were mounted on the ceilinghef t actions.
pervasive lab and the other two were placed onsdesk We have run a set of other experiments with rangloml
The ten sensor motes were put at ten differenteglac generated initial head positions for each camedaveith
the pervasive lab. For instance, Mote 1 was atthdb  other sensor locations. In all experiments, thieoof the
the front door of the lab and Mote 2 was put by thecameras by the estimated cost was the same asythiae
window. The view range of each camera covered thegal cost, and the difference between the estimetstl
locations of a few motes. The location of eacheneas  and the real cost had an upper bound of 200 ndltbisds.
in the view range of at least two cameras. Weigandd One set of these experimental results is showralsleT3.
the cameras to tune their zoom level automatidadiged The target location of the photo() action was theation
on the target location for taking photos. The psgpwas of Mote 2, which was by the window of our pervasie.
to take photos with the same view size no matter fas ~ The reason that Camera 2 took a much longer tirae th
a camera was from the target location, so thatgshof  the other two cameras was that the window wasréan
the same location taken by two different camerad hathe camera and consequently the camera needed to
almost the same visual quality. enlarge its zoom level greatly, which took a lotiofe.

5.2 Validation of the Cost Estimation M odd Table 3: Cost of taking q_photo vyit.h random initial
camera head positions (milliseconds)
We first used the snapshot query in Figure 4 tifweur

cost model for actions. In this experiment, alurfo Camera) Initial Head Estimated| Real
cameras were started from their “home” positioren p ID Posffln =63 Cost Cost
0, tilt = 0 and zoom = 1. We pushed the front dofothe 1 222;1:5061__ 3021 3077
pervasive lab to let Mote 1 (attached to the dget)an x- pan=137 tilt=-33

axis acceleration rate larger than 500 so thatxaougion 2 z0om=1 5425 5595
of the query was triggered. All cameras had ncewth an=-75 tilt=-30

workload. 4 goomzl 3770 3782

Table 2: Estimated cost versus real cost of takiphoto g 3 Optimization of a Single Action-Embedded
on different cameras (milliseconds) ' Query

Camera ID 1 2 3 4 : . . . .
The main performance metric used in this studyhis t

Estimated Cost 2993 3638 N/A 3347 . . .

Real Cost 30611 3684 N/A 3381 response timeof one execution of an action-embedded

query, which is defined as follows: the intervahvbeen
the time an event is detected (i.e., an executiothe
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query is triggered) and the time the selected devic

finishes executing the action. This metric repnéséow
fast a query can respond to an event occurrence.

Figure 11 shows the time breakdown of an execution
of the snapshot query for both the optimized case a
non-optimized cases. In the optimized case, thienoger

For the AXIS 2130(R) PTZ network cameras used indid action cost estimation for all candidate carmeaad

our experiments, the pan, tilt and zoom rangeshemt
were [-169, 169], [-90, 10] and [1, 9999], respesity.

selected Camera 1 to execute the action. In the no
optimized cases, the cost estimation module wasbtdd

Since these three types of operations are indepéndeand the optimizer randomly selected a camera, which

from each other and can be executed in parallethén
extreme case the performance difference of twoidatel
cameras for executing a photo() action could belydab
seconds. In the experiments that we did for vergfour
cost model (see Section 5.2), the difference ipaese

could be any one of Cameras 1-4. The initial head
positions of all cameras were set to their hométipas.

In the figure, “Optimization” is the time the opfier
spent selecting a device from the candidates, Oictis
the time for the selected device to execute thieracand

time between different candidate devices was 0.2 to “Others” is the processing cost of the other omesatn

seconds in general.

One may wonder how pervasive
applications can benefit from such a “slight” impeanent
in query response time. To illustrate this poaunsider
the snapshot query again. We set the head of Gahrier
several different initial positions while making rsuit

the query plan. The optimization time of a noniopted

computingcase was smaller than that of the optimized césee she

optimizer was simply doing random selection. The
optimization time of the optimized case shown i th
figure was 220 milliseconds, due to the connection
timeout of the malfunctioning Camera 3. We also aa

always had the least estimated cost among the datedi test with Camera 3 excluded and the optimizatiometi

cameras.

As a result, the optimizer always sealectewas instead 70 milliseconds only.

In comparisdrg t

Camera 1 to execute the action when Mote 1 attaohed optimization time of a non-optimized case was 40
the front door detected a movement and triggered amilliseconds.

execution of the query. We simulated the situatioat
someone was entering the pervasive lab at a na@peald
(by pushing the front door from the outside) and tens
of experiments. An execution of the query with spanse
time about 2.6 seconds always resulted in a phiotitas
to the one on the left of Figure 10, whereas arcugien

In the figure, we also see that the cost of exagutie
action on the device dominated the query processisg
Note that in a non-optimized case, when the op8miz
happened to pick the device with the least cost for
executing the action, the total query response tivas
slightly less than that of the optimized case. Hwoev, the

of the query with a response time about 3.2 secondsptimization cost is tiny in comparison with thetian

always resulted in a photo similar to the one anright.
This is simply because a physical-world event sash
object movement may last only seconds or milliseson

-
.

A\ L | v
Figure 10: Photos taken by Camera 1 with diffecprary
response times
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Figure 11: Time breakdown of four different exeons
of the snapshot query
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cost. As a result, our optimization is benefigaice it
trades a little larger processing cost at the seside for
the possibly much smaller processing cost at theuree-
constrained device side. Even when the total respo
time improvement is insignificant, our optimization
techniques can prevent overloading of devices.

5.4 Optimization of Multiple Action-Embedded
Queries

After examining the optimization issues of a single
action-embedded query, we continue to investighte t
impact of our group optimization techniques.

In the first experiment, we generated ten querieb a
registered them to the system. All queries werghim
following format (1< i < 10):
CREATE AQ test_query_i AS

SELECT photo(c.ip, s.loc, “photos/test”))

FROM sensor s, camera ¢

WHERE s.id =i

AND coverage(c.id, s.loc)
AND every(1, minute)

In every minute, the i-th query requested a cartera
take a photo of Mote i's location. In every growptime
interval, we found that our Algorithm 1 could dibtrte
the ten action requests from these ten querieslynear



uniformly to all three functioning cameras. Canseta2 comparison, Aorta handles a network of heterogemeou
and 4 were assigned 3, 4, and 3 requests, resglgctiv devices. Work similar to ours is the Augmented
Next, we examined the performance impact ofRecording System [24], in which the authors propddse
prioritizing and servicing multiple action requesis a actuate camera operations based on various sensor
single device using Algorithm 2. We unplugged Ceame readings. However, this idea of actuation was not
2-4 so that all requests were directed to CameraVe  implemented in the paper and only sensory dataaisih
created queries to periodically request the canetake  methodology was presented. Moreover, Aorta takes t
photos of the mote locations. The queries haveséimee database query processing approach for the develapm
format as the ten queries used in the previousrarpat. and optimization of pervasive computing applicasion
We varied the hotness (the probability of beingtped)  which distinguishes itself from most existing woirk
of the ten mote locations from uniformly distribdtéo  pervasive computing.
highly skewed. In the database area, the design and implementation
Since we considered multiple requests as a whole iAorta has been influenced by a large body of recent
this scenario, we recorded the total real cost Ibf aresearch work on sensor databases and data stream
requests. We compared the performance of the @@dn management systems, including Aurora [6], Cougar
case (using Algorithm 2) and the non-optimized casg3][4][27], IrisNet [11], STREAM [19], Telegraph [7
(Algorithm 2 was disabled in the optimizer and theand TinyDB [17]. These systems mainly deal witlhada
requests were serviced in a random order on aeevic flows, but have basic mechanisms for events and/or
Figure 12 shows the total real cost for both thedevice actuation. In comparison, we have less esiph
optimized and the non-optimized cases when the pumbon data flows but focus on optimizing and executing
of simultaneous action requests N on Camera 1asex actions in networks of heterogeneous devices.
from 2 to 10. The hotness of the mote locations wa  Actions are closely related to user-defined fumio
skewed. The values for the non-optimized case Were and stored procedures, which are widely supported i
average of ten runs. Taking an average was bedause commercial DBMS products, such as IBM DB2 and
the non-optimized case Camera 1 serviced the rexjuesMicrosoft SQL Server. These functions and proceslur
randomly, so two runs might have a large varianceost.  seldom have the side effects on devices as actions

80000 1 Aorta and usually run outside the core of the DBMS.
o 290001 Consequently, early work on optimization and exiecut
g 20000 1 _ techniques for expensive methods [16] and expensive
9 15000 | "‘zp"'g'zt‘?d. ) predicates [8][14] has focused on caching the tesu
2 0000 | oo ordering the predicates in query execution plans
Ea— comparison, we regard actions as first-class citizi
o query processing and optimize them for the perfoicea
) 4 6 s 10 of their side effects on devices. In addition, qlan
4 of Simultaneous Action enumeration in query processing is on candidatécdev
Requests selection of individual action operators rather ntha
. o . ordering of operators.
Figure 12: The total real cost of servicing mukiphoto() Query optimization for minimizing response time has
action requests on Camera 1 been previously studied in traditional parallel and

The figure illustrates that in the non-optimizedsga distributed database systems [1][12]. Our optitza
the total real cost for of all requests increaseshy with ~ @PProach is specifically ~designed for pervasive
respect to N:; whereas in the optimized case, such £omputing, whlch mainly |'nvolves §electlng the best
increase was less significant and even became temod@ndidate device for executing an action. Moreower
when a threshold was reached (N = 8). This suggkat Proposed cost model is general and applicable wide
group optimization of multiple requests on a sirggwice ~ fange of cost metrics in addition to response time.
improves the overall response time and the device Finally, action-embedded queries are closely relede
utilization. When the threshold was reached, teeick  (1199€rs [13][21] and continuous queries [9][18][2%s a
was nearly fully loaded and utilized. result, general group optimization techniques iesth

The results for the mote locations with uniformly &r€as, such as predicate indexing or query indexing
distributed hotness were similar to those in Figleeand ~ @pplicable to our system for testing the query dmrs

therefore were omitted from the paper. of a group of queries. Given the goal of our systan
optimizing device actions for pervasive computing
6. Related Work applications, we focus on considering the interplay

between devices and actions in our work.  This
Recent work in pervasive computing focuses on nedsvo consideration makes our cost model different frahes
of homogeneous devices, e.g. RFID (Radio Frequencgnd our query optimization and execution processemo
Identification) tags [20] and cell phones [23]. Indynamic. In addition, the adaptivity of our optirafion
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of actions to the current physical status of theabs and
our group optimization of actions share a similgiris
with CACQ [18] and NiagaraCQ [9]. (8]

7. Conclusion [l
We have presented the design and implementation of
Aorta, an action-oriented query processor for pEme (0]
computing. The goal of Aorta is to ease the dewalent  [11]
and the optimization of pervasive computing appioces.

We have extended SQL for pervasive computingilz]
applications to specify their actions and actiorbedded
queries. We treat actions as first-class operatoguery
execution plans, and investigate adaptive, costtbas
optimization techniques for them. We have proposed
cost model to estimate the cost of an action ei@twn
candidate devices in terms of response time. W ha
also investigated group optimization techniques for1s)
multiple action-embedded queries that have the same
action. Our experimental results with a pervadafe
monitoring application demonstrate that our costiehdas
reasonably accurate, and that our proposed singeyq
or multi-query optimization techniques ensure aodrre
application semantics, improve query response tme
balance device workload.

Future work includes extending our techniques fo
multi-device actions and actions towards new typés

(13]

(14]

[16]

[17]

devices, studying more sophisticated group optitiuna [1g]
techniques for action-embedded queries, and impgovi
our query interface to be more general and expressi

[19]
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